Inhaltsverzeichnis

1 Einleitung
1.1 Über das Benutzerhandbuch

2 Sicherheit
2.1 Allgemeines zur Sicherheit

3 Kurzbeschreibung
3.1 Datenverkehr aufzeichnen und analysieren

4 Gerätezeichnungen
4.1 Analyzer-Gerät NANL-B500G-RE

5 Systemvoraussetzungen
5.1 Hardware-Voraussetzungen

6 Schnelleinstieg
6.1 Hinweise zur Installation und zum Betrieb

1 Einleitung
1.1 Über das Benutzerhandbuch

2 Sicherheit
2.1 Allgemeines zur Sicherheit

3 Kurzbeschreibung
3.1 Datenverkehr aufzeichnen und analysieren

4 Gerätezeichnungen
4.1 Analyzer-Gerät NANL-B500G-RE

5 Systemvoraussetzungen
5.1 Hardware-Voraussetzungen

6 Schnelleinstieg
6.1 Hinweise zur Installation und zum Betrieb
6.4.6 Unterbrechung der Spannungsversorgung während Schreib- und Löschzugriffen auf Flash-Speicher ... 25
6.5 IP-Adresse konfigurieren .. 26

7 Inbetriebnahme ... 28

7.1 Überprüfung der Firewall-Einstellungen .. 28
7.2 netANALYZER-Konfigurationsseite .. 29
7.3 Interaktive Betriebsart, Anschluss an PC .. 31
7.4 Autonome Betriebsart, Randbedingungen und Voraussetzungen .. 32
7.4.1 PCAP-Dateien (Dateiname und -größe) .. 33
7.4.2 Voraussetzungen zur Verwendung der Autonomen Betriebsart .. 33
7.4.3 Voreinstellungen zum Verhalten der GPIO-Signale im „Live-Dump-Mode“ .. 34
7.4.4 Uhrzeit für Autonome Betriebsart einstellen .. 35
7.4.5 Erforderliche USB-Speicherkapazität für Snapshot-Mode theoretisch abschätzen .. 37
7.4.6 Maximale Anzahl Snapshots für Autonome Betriebsart einstellen .. 39
7.4.7 NANL-B500G-RE in der Autonomen Betriebsart starten bzw. stoppen .. 41
7.5 Autonome Betriebsart, Aufzeichnung auf USB-Speichermedium .. 42
7.5.1 Vollständige Aufzeichnung (Live-Dump-Mode) .. 42
7.5.2 Ausschnitte aufzeichnen (Snapshot-Mode) .. 44
7.5.3 Ethernet-Frame-Verluste in Wireshark anzeigen .. 46
7.6 netANALYZER-Hardware in Kommunikationsstrecke einfügen .. 48
7.6.1 Anwendungsfall 1 ... 49
7.6.2 Anwendungsfall 2 ... 50
7.6.3 Anwendungsfall 3 ... 51
7.6.4 Anwendungsfall 4 ... 52
7.7 Begrenzung der Datenlast .. 54
7.8 Auto-Crossover und Port-Vertauschen .. 55
7.9 NANL-B500G-RE-Firmware aktualisieren .. 56
7.9.1 NANL-B500G-RE-Firmware mit einem Webbrowser aktualisieren .. 56
7.9.2 NANL-B500G-RE-Firmware über FTP aktualisieren ... 58
7.10 Temperatursteuerung des Ventilators (NANL-B500G-RE) .. 61
7.11 Elektronik-Altgeräte entsorgen und recyclen .. 61

8 Hardware-Eigenschaften ... 63
8.1 Zeitstempel .. 64
8.2 Transparent-Modus (Transparent Mode) .. 65

9 Fehlersuche ... 66

10 LEDs .. 68
10.1 LEDs NANL-B500G-RE .. 68
10.1.1 SYS, STA0, STA1, I/O, LINK und RX (NANL-B500G-RE, Frontseite) .. 68
10.1.2 LINK-ACT und LINK-1000/LINK100 (NANL-B500G-RE, Rückseite) ... 71

11 Anschlüsse und Schnittstellen ... 72
11.1 Spannungsversorgung NANL-B500G-RE ... 72
11.2 Ethernet-Schnittstelle ... 73
11.2.1 Ethernet-Pin-Belegung an der RJ45-Buchse .. 73
11.2.2 Daten zum Ethernet-Anschluss ... 73
11.3 Externe EA-Schnittstelle ... 74
Inhaltsverzeichnis

11.3.1 Anschlusskabel für externe EA-Schnittstelle .. 74
11.3.2 Charakteristik des Eingangssignals an der E/A-Schnittstelle 75

12 Technische Daten ... 76
12.1 Analyzer-Gerät NANL-B500G-RE ... 76

13 Anhang.. 79
13.1 Quellennachweise Sicherheit .. 79
13.2 Konventionen in diesem Dokument ... 80
13.3 Rechtliche Hinweise ... 81
13.4 Warenmarken ... 84

Glossar... 87

Kontakte... 88
1 Einleitung

1.1 Über das Benutzerhandbuch

Zu den Beschreibungen zur Software-Installation, siehe Installation der Software für netANALYZER-Geräte, bzw. zur Software-Bedienung, siehe Bedienerhandbuch netANALYZER Scope auf der Produkt-DVD.

1.1.1 Pflicht zum Lesen des Handbuches

Wichtig:
Um Personenschaden und Schaden an Ihrem System und Ihres Gerätes zu vermeiden, müssen Sie vor der Installation und Verwendung Ihres Gerätes alle Instruktionen in diesem Handbuch lesen und verstehen.

- Lesen Sie sich zuerst die Sicherheitshinweise im Kapitel Sicherheit durch.
- Beachten und befolgen Sie alle Warnhinweise im Handbuch.
- Bewahren Sie die Produkt-DVD als ZIP-Datei mit den Handbüchern zu Ihrem Produkt auf.

1.1.2 Änderungsübersicht

<table>
<thead>
<tr>
<th>Index</th>
<th>Datum</th>
<th>Änderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>04.04.2022</td>
<td>Überarbeitungen.</td>
</tr>
<tr>
<td>28</td>
<td>26.01.2023</td>
<td>Abschnitt Analyzer-Gerät NANL-B500G-RE [§ Seite 76]: UKCA ergänzt.</td>
</tr>
</tbody>
</table>

Tabelle 1: Änderungsübersicht
1.2 Produkt-DVD und Dokumentation

Wichtige Installationskomponenten auf der netANALYZER Scope DVD

- netANALYZER Scope
- netANALYZER / netSCOPE Device Driver (Gerätetreiber); für Windows® 7, Windows® 8 und Windows® 10 (jeweils für 32-bit- und 64-bit-Architektur)
- Remote-Access-Client (für Analyzer-Gerät NANL-B500G-RE)
- Hilscher-Lizenzmanager
- WinPcap-Treiber
 Der mitgelieferte WinPcap-Treiber ist erforderlich, damit Ihr netANALYZER-Gerät in dem auf Ihrem PC installierten Netzwerkmonitoring-Programm als Aufzeichnungsgerät zur Verfügung steht.
- Ethernet Device Configuration Tool (für NANL-B500G-RE)
- Dokumentation und Beispiele
- NANL-B500G-RE firmware update (nanl-b500g-re.update)

Detaillierte Angaben zum Inhalt der Produkt-DVD und zur Dokumentation für netANALYZER finden Sie in den Installationshinweisen **Installation der Software für netANALYZER-Geräte**.

1.3 Hardware-, Firmware- und Treiberversionen

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Geräte-Typ</th>
<th>Art.-Nr.</th>
<th>Rev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>netANALYZER portables Gerät</td>
<td>mit Gigabit-Ethernet-PC-Schnittstelle für Echtzeit-Ethernet und alle 10/100BASE-T-Ethernet-Netzwerke</td>
<td>NANL-B500G-RE</td>
<td>7.313.100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NANL-B500G-RE</td>
<td>7.313.100</td>
</tr>
</tbody>
</table>

Tabelle 2: netANALYZER-Hardware

<table>
<thead>
<tr>
<th>Name</th>
<th>Dateiname</th>
<th>Version</th>
<th>Pfad</th>
</tr>
</thead>
<tbody>
<tr>
<td>netANALYZER / netSCOPE Device Driver</td>
<td>NSCP-100.nxf</td>
<td>2.0.x.x</td>
<td>C:\Programme\netANALYZER Device Driver...</td>
</tr>
<tr>
<td>netANALYZER-Toolkit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NANL-B500G-RE-Image-Version</td>
<td><kein Dateiname></td>
<td>1.10.x.x</td>
<td><kein Pfad></td>
</tr>
</tbody>
</table>

Tabelle 3: Installierte Dateien für netANALYZER (Firmware, Treiber, Toolkit)
Einleitung

1.4 Lizenzen

Um für das Analyzer-Gerät NANL-B500G-RE das Datenerfassungs- und Analyseprogramm netANALYZER Scope vollständig nutzen zu können, benötigen Sie eine Basislizenz. Gegebenenfalls sind weitere protokollabhängige oder sonstige Zusatzlizenzen (Add-ons) erforderlich.

„Autonomen Betriebsart“ und „Snapshot-Mode“

Hinweis:

<table>
<thead>
<tr>
<th>Artikelnummer</th>
<th>Artikelbezeichnung</th>
<th>Beschreibung</th>
<th>Erläuterung</th>
</tr>
</thead>
</table>
| 8582.001 | LIC/SCPBS | netANALYZER Scope base | netANALYZER Scope-Software-Lizenz, Basislizenz

Tabelle 4: Erforderliche Lizenzen für „Autonomen Betriebsart“ und „Snapshot-Mode“
2 Sicherheit

2.1 Allgemeines zur Sicherheit

Die Dokumentation in Form eines Benutzerhandbuchs, eines Bedienerhandbuchs oder weiterer Handbuchtypen, sowie die Begleittexte sind für die Verwendung der Produkte durch ausgebildetes Fachpersonal erstellt worden. Bei der Nutzung der Produkte sind sämtliche Sicherheitshinweise sowie alle geltenden Vorschriften zu beachten. Technische Kenntnisse werden vorausgesetzt. Der Verwender hat die Einhaltung der Gesetzesbestimmungen sicherzustellen.

2.2 Bestimmungsgemäßer Gebrauch

<table>
<thead>
<tr>
<th>Geräte-Name</th>
<th>Geräte-Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>netANALYZER portables Gerät</td>
<td>NANL-B500G-RE</td>
</tr>
<tr>
<td>mit Gigabit-Ethernet-PC-Schnittstelle für Echtzeit-Ethernet und alle 10/100BASE-T-Ethernet-Netzwerke</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5: netANALYZER-Gerät

Wird das Analyzer-Gerät NANL-B500G-RE außerhalb des in diesem Benutzerhandbuch bzw. den zugehörigen Dokumentationen beschriebenen Anwendungsbereichs verwendet, kann für seine einwandfreie Funktion nicht gewährleistet werden.

2.3 Personalqualifizierung

Das Analyzer-Gerät NANL-B500G-RE darf ausschließlich von qualifiziertem Fachpersonal montiert, konfiguriert, betrieben oder demontiert werden. Berufsspezifische Fachqualifikationen für Elektroberufe zu den folgenden Fragen müssen vorliegen:

- Sicherheit und Gesundheitsschutz bei der Arbeit
- Montieren und Anschließen elektrischer Betriebsmittel
- Messen und Analysieren von elektrischen Funktionen und Systemen
- Beurteilen der Sicherheit von elektrischen Anlagen und Betriebsmitteln
- Installieren und Konfigurieren von IT-Systemen
2.4 Sachschaden

Um Sachschäden am Gerät und Ihrem System zu vermeiden, müssen Sie alle Sicherheitshinweise und alle Warnhinweise in diesem Handbuch unbedingt lesen, verstehen und befolgen, bevor Sie Ihr Gerät installieren und in Betrieb nehmen.

2.4.1 Überschreitung der zulässigen Versorgungsspannung

Gerät NANL-B500G-RE

Um einen Schaden an Ihrem Gerät durch zu hohe Versorgungsspannung zu vermeiden, müssen Sie die nachfolgenden Hinweise beachten. Diese gelten für alle in diesem Handbuch beschriebenen Geräte.

Die Angaben zur vorgeschriebenen Versorgungsspannung für die in diesem Handbuch beschriebenen Geräte sind unter Abschnitt Spannungversorgung und Host-Schnittstelle zu finden.

2.4.2 Überschreitung der zulässigen Signalspannung

Gerät NANL-B500G-RE

Um einen Schaden an Ihrem Gerät durch zu hohe Signalspannung zu vermeiden, müssen Sie die nachfolgenden Hinweise beachten. Diese gelten für alle in diesem Handbuch beschriebenen Geräte.

- Alle I/O-Signal-Pins am Gerät tolerieren nur die vorgeschriebene Signalspannung!
- Der Betrieb des Gerätes bei einer Signalspannung, welche die vorgeschriebene Signalspannung überschreitet, kann zu schweren Beschädigungen des Gerätes führen!

Die Angaben zur vorgeschriebenen Signalspannung für die in diesem Handbuch beschriebenen Geräte sind unter Abschnitt Spannungversorgung und Host-Schnittstelle zu finden.
2.4.3 Überschreitung der zulässigen Stromentnahme an der externen EA-Schnittstelle

Gerät NANL-B500G-RE

Um einen Schaden an Ihrem Gerät durch zu hohe Stromentnahme an der externen EA-Schnittstelle zu vermeiden, müssen Sie die nachfolgenden Hinweise beachten. Diese gelten für alle in diesem Handbuch beschriebenen Geräte.

- Beim Betrieb des NANL-B500G-RE-Gerätes dürfen die vorgeschriebenen gerätespezifischen Maximalwerte für die Stromentnahme an den I/O-Signal-Pins der externen EA-Schnittstelle nicht überschritten werden.

- Der netX-Chip sowie weitere Bauelemente des NANL-B500G-RE-Gerätes können beschädigt werden, wenn die Stromentnahme an den I/O-Signal-Pins der externen EA-Schnittstelle, die maximal erlaubten Werte überschreitet!

Die Angaben zur maximalen Stromentnahme an den I/O-Signal-Pins für das in diesem Handbuch beschriebene Gerät sind unter Abschnitt Maximal zulässige Stromentnahme (externe EA-Schnittstelle) [Seite 18] zu finden.

2.4.4 Beschädigung extern angeschlossener Hardware

NANL-B500G-RE

- Wenn der +3,3V-Ausgang der externen EA-Schnittstelle aktiviert ist (I/O-Status-LED leuchtet orange), könnte extern angeschlossene Hardware beschädigt werden, da Spannung am Gerät anliegt.

- Wenn der +24V-Ausgang der externen EA-Schnittstelle aktiviert ist (I/O-Status-LED leuchtet rot), könnte extern angeschlossene Hardware beschädigt werden, da Spannung am Gerät anliegt.

2.4.5 Vergabe falscher IP-Adressen, Fehlfunktionen (NANL-B500G-RE)

Bevor Sie das Analyzer-Gerät NANL-B500G-RE mit einem Netzwerk verbinden, müssen Sie sicherstellen, dass der Modus DHCP-Server-Betrieb deaktiviert ist.

2.4.6 Unterbrechung der Spannungsversorgung während Schreib- und Löschzugriffen auf Flash-Speicher

Das FAT-Dateisystem in der netX Firmware unterliegt bestimmten Einschränkungen im Betrieb derselben. Schreib- und Löschzugriffe im Dateisystem (Firmware aktualisieren, Konfiguration speichern etc.) können zur Zerstörung der FAT (File Allocation Table) führen, falls die Zugriffe durch einen Spannungseinbruch nicht abgeschlossen werden können. Ist die FAT beschädigt, wird unter Umständen eine Firmware nicht gefunden und kann nicht gestartet werden.

- Stellen Sie sicher, dass die Spannungsversorgung des Gerätes während der Schreib- und Löschzugriffe im Dateisystem (Firmware aktualisieren, Konfigurationsdownload usw.) nicht unterbrochen wird.

2.4.7 Überschreiten der maximalen Anzahl erlaubter Schreib- und Löschzugriffe

Dieses Gerät verwendet einen seriellen Flash-Baustein zum Speichern remanenter Daten wie z. B. Speichern der Firmware, Speichern der Konfiguration usw. Dieser Baustein erlaubt maximal 100.000 Schreib-/Löschzugriffe, die für einen normalen Betrieb des Gerätes ausreichen. Zu häufiges Schreiben/Lösch des Bausteins (z. B. Ändern der Konfiguration oder das Ändern des Stationsnamens) führen jedoch zum Überschreiten der maximalen Anzahl erlaubter Schreib-/Löschzugriffe und zu einem Geräteschaden. Wird beispielsweise die Konfiguration einmal in der Stunde geändert, dann wird die maximale Anzahl nach 11,5 Jahren erreicht. Wird die Konfiguration noch häufiger, beispielsweise einmal in der Minute geändert, dann wird die maximale Anzahl nach ca. 69 Tagen erreicht.

Vermeiden Sie das Überschreiten der maximal erlaubten Schreib-/Löschzugriffe durch zu häufiges Schreiben.
3 Kurzbeschreibung

Mit dem Analyzer-Gerät NANL-B500G-RE können Sie die Performance und die Funktionen einzelner Systeme bzw. Systemkomponenten von Bussystemen aufzeichnen, die der Ethernet II IEEE 802.3-Spezifikation entsprechen.

Zur Prozesswert-Erfassung und für die übersichtliche Darstellung von Messwerten kann die ergänzend erhältliche Softwareerweiterung netANALYZER Scope verwendet werden. Aufgezeichnete Frame-Daten können zur detaillierten Protokollanalyse in Wireshark verwendet werden.
3.1 Datenverkehr aufzeichnen und analysieren

Abbildung 1: Typische Anwendung (Anwendungsfall 2) – Die Kommunikation zwischen einem Gerät und dessen Verbindungspartnern in einem Netzwerk soll analysiert werden

Interaktiven Betriebsart, Autonomen Betriebsart
- In der „Interaktiven Betriebsart“ muss die Datenaufzeichnung über die PC-Software konfiguriert bzw. gestartet werden. So erfassen das Analyzer-Gerät NANL-B500G-RE, sowie die PC-Software die Datenpakete der Kommunikationsstrecke, übertragen die Datenpakete und speichern diese auf der Festplatte ab.
- In der „Autonomen Betriebsart“ erfolgt die Datenaufzeichnung beim Analyzer-Gerät NANL-B500G-RE alternativ mit Start und Stopp über die REC-Taste, ohne PC-Software.

Test Access Points (TAP)

Am Analyzer-Gerät NANL-B500G-RE sind zwei TAPs integriert, sodass zwei Kommunikationskanäle einsatzbereit sind.

Abbildung 2: Beispieldarstellung physikalischer TAP
Verzögerung der Ethernet-Signale durch den TAP

Die Verzögerung (Delay) der Ethernet-Signale durch den Test Access Point (TAP) in einer Ethernet-Strecke beträgt:

<table>
<thead>
<tr>
<th>Ports</th>
<th>TAP Delay [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 → 1</td>
<td>< 1</td>
</tr>
<tr>
<td>1 → 0</td>
<td>< 1</td>
</tr>
<tr>
<td>3 → 4</td>
<td>< 1</td>
</tr>
<tr>
<td>4 → 3</td>
<td>< 1</td>
</tr>
</tbody>
</table>

Tabelle 6: TAP Delay

Datenaufzeichnung

Diagramm 3: Typische Analyzer-Anwendung mit Aufzeichnung des Ethernet-Datentransfers und der IO-Ereignisse

Digitale Eingänge

Hinweis:

3.2 Interaktive und Autonome Betriebsart

Interaktive Betriebsart

In der „Interaktiven Betriebsart“ ist das NANL-B500G-RE-Gerät mit einem PC verbunden.

Autonome Betriebsart

Das NANL-B500G-RE-Gerät erlaubt Ihnen (ab der netANALYZER-Firmware-Image-Version 1.2.0.0) zusätzlich die Verwendung der „Autonome Betriebsart“, bei welcher das Gerät nicht an einen PC angeschlossen ist. In dieser Betriebsart können Sie das Analyzer-Gerät in eine Kommunikationsstrecke integrieren und die Aufzeichnung von Frames per Knopf (rote Taste REC) starten und stoppen. Die Daten werden direkt auf dem angeschlossenen USB-Speichermedium abgelegt.

Wichtig:
Weitere Beschreibungen zur Verwendung des Analyzer-Gerätes NANL-B500G-RE in der Interaktiven Betriebsart sowie der Autonomen Betriebsart finden Sie im Kapitel Inbetriebnahme [Seite 28].
4 Gerätezeichnungen

4.1 Analyzer-Gerät NANL-B500G-RE

Abbildung 5: Frontseite Analyzer-Gerät NANL-B500G-RE

Abbildung 6: Rückseite Analyzer-Gerät NANL-B500G-RE

<table>
<thead>
<tr>
<th></th>
<th>SYS System-LED (gelb/grün), STA0, STA1 Status-LEDs (rot/grün), I/O Status-LED (rot/grün)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Externe EA-Schnittstelle Externe Schnittstelle Eingangs-/Ausgangssignale mit 4 digitalen Eingängen/Ausgängen (GPIO s 0 bis 3)</td>
</tr>
<tr>
<td>4</td>
<td>REC: Taste zur Aktivierung der Datenaufnahme in der „Autonomen Betriebsart“, siehe Abschnitt Autonome Betriebsart, Aufzeichnung auf USB-Speichermedium [– Seite 42]. (Zusatzfunktion: Wiederherstellen der Standardinstellung für die IP-Adresse Ihres Gerätes (DHCP-Server-Betrieb) - dazu beim Geräteerneustart REC ca. 1 Minute lang gedrückt halten)</td>
</tr>
<tr>
<td>5</td>
<td>Alternativ Anschlussbuchse +24V für Anschluss Netzteil</td>
</tr>
<tr>
<td>6</td>
<td>24V-Spannungsversorgung Combicon: GND/+24V/FE</td>
</tr>
<tr>
<td>7</td>
<td>Netzschalter (ON/OFF)</td>
</tr>
<tr>
<td>8</td>
<td>Gigabit-Ethernet-RJ45-Buchse zum PC (1 Port mit 1 Gb/s)</td>
</tr>
<tr>
<td>9</td>
<td>USB-Buchse (Typ A, USB 2.0, 4-polig)</td>
</tr>
</tbody>
</table>

Tabelle 7: Erklärungen zur Frontseite und Rückseite NANL-B500G-RE
5 Systemvoraussetzungen

- Um die Produkt-DVD herunterladen zu können, benötigen Sie einen Internetzugang.

5.1 Hardware-Voraussetzungen

PC mit folgender Spezifikation:
- Intel-kompatible CPU, ca. 2 GHz oder schneller
- SVGA 1024x768 16bit-Farben oder besser
- freier Festplattenspeicher für die Wireshark-Software und netANALYZER Scope-Software; zusätzlich erforderliche Speicherkapazität für Ethernet-Frame-Daten hängt vom verwendeten Use-Case ab.
- 1 separate Netzwerkkarte mit RJ45-Ethernet-Buchse (1 Gb/s) (für das NANL-B500G-RE-Gerät)

Zubehör:
- 2 Patch-Kabel (Ethernet)

Hinweis:
Die Gesamtlänge der Ethernet-Kabel über welche das NANL-B500G-RE-Gerät in einem Ethernet-System über ein TAP mit Geräten in diesem System verbunden ist, darf in der Summe maximal 100 Meter betragen.

- Das Kabel für die 24V-Spannungsversorgung darf maximal 3 Meter lang sein.
- Netzeil für NANL-B500G-RE-Gerät: 24V DC/ 1,3A

Hinweis:
Das mit dem NANL-B500G-RE-Gerät gelieferte Netzeil (für Standardanwendungen) ist wie folgt ausgelegt: 24V DC / 1,25A (1,8m KAB). Siehe auch Abschnitt Spannungsversorgung und Host-Schnittstelle.
5.2 Spannungsversorgung und Host-Schnittstelle

Für die Spannungsversorgung sowie die Host-Schnittstelle für das Analyzer-Gerät NANL-B500G-RE müssen Sie die folgenden Vorgaben berücksichtigen:

<table>
<thead>
<tr>
<th>netANALYZER-Hardware</th>
<th>Versorgungsspannung</th>
<th>Host-Schnittstelle</th>
<th>Signalspannung External IO</th>
</tr>
</thead>
<tbody>
<tr>
<td>NANL-B500G-RE</td>
<td>24V DC / 1,3A / 31,2W, 18V ... 30V DC</td>
<td>RJ45-Ethernet Buchse (1 Gb/s)</td>
<td>3.3 V 1 mA oder 24V / max. 600 mA</td>
</tr>
</tbody>
</table>

Tabelle 8: Anforderungen Spannungsversorgung und Host-Schnittstelle NANL-B500G-RE

Die Angaben in der obigen Tabelle haben die folgende Bedeutung:

Versorgungsspannung
Die erforderliche bzw. zulässige Versorgungsspannung am Analyzer-Gerät

Host-Schnittstelle Typ der Host-Schnittstelle

Signalspannung External IO
Die erforderliche bzw. tolerierte Signalspannung an den I/O-Signal-Pins der externen EA-Schnittstelle des Analyzer-Gerätes

Hinweis:
Wird das mit dem NANL-B500G-RE-Gerät gelieferte Netzteil (24V DC / 1,25A) verwendet, schaltet sich bei 500 mA an der externen EA-Schnittstelle des NANL-B500G-RE-Gerätes die Strombegrenzung ein. Um einen Reset des Analyzer-Gerätes zu vermeiden, wird für diesen Sonderfall die Verwendung eines leistungsstärkeren Netzteils (24V DC / 1,3A) empfohlen.

Weiter siehe auch Abschnitt Spannungsversorgung NANL-B500E-RE.

5.3 Maximal zulässige Stromentnahme (externe EA-Schnittstelle)

NANL-B500G-RE
Für das Analyzer-Gerät NANL-B500G-RE beträgt die maximale Stromentnahme an der externen EA-Schnittstelle (für alle I/O-Signal-Pins 1, 3, 5 und 7 zusammen):

- 1 mA (bei 3,3V Signalspannung an der externen EA-Schnittstelle)
- 600 mA (bei 24V Signalspannung an der externen EA-Schnittstelle)

<table>
<thead>
<tr>
<th>Geräte-Name</th>
<th>Geräte-Typ</th>
<th>Revision</th>
<th>Maximal zulässige Stromentnahme an der externen EA-Schnittstelle in [mA] bei 3,3 V bzw. 24 V Signalspannung</th>
</tr>
</thead>
<tbody>
<tr>
<td>netANALYZER portables Gerät RTE Gigabit</td>
<td>NANL-B500G-RE</td>
<td>2</td>
<td>bei 3,3V: 1 mA</td>
</tr>
<tr>
<td></td>
<td>NANL-B500G-RE</td>
<td>3</td>
<td>bei 24V: 600 mA</td>
</tr>
<tr>
<td></td>
<td>NANL-B500G-RE</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 9: Maximal zulässige Stromentnahme (externe EA-Schnittstelle NANL-B500G-RE)
5.4 Voraussetzung NANL-B500G-RE (Autonome Betriebsart)

Voraussetzungen zur Verwendung der Autonomen Betriebsart

- netANALYZER-Image-Version 1.2.0.0 (oder höher)
- Lizenz (für netANALYZER Scope) 8582.060 LIC/NANL/SA
- Für „Snapshot-Mode“: Zusätzliche erforderliche Lizenz 8582.001 LIC/SCPBS
- Gegebenenfalls weitere protokollabhängige oder sonstige Zusatzlizenzen (Add-ons)
- USB-Speichermedium, FAT32-formatiert oder ext4-formatiert, mindestens 100 MByte Speicherkapazität

Wichtig:

FAT-Dateisystembeschädigung und Datenverlust bei Eintritt eines Spannungsausfalls

Wenn Sie für Ihr USB-Speichermedium ein FAT32-Dateisystem verwenden, müssen Sie im Fall einer Spannungsunterbrechung mit dem Auftreten von Dateisystemfehlern rechnen. Das heißt, kommt es zu einer Unterbrechung der Spannungsversorgung zum Analyzer-Gerät während eine Aufzeichnung läuft und wenn gerade ein Speichervorgang eines Snapshots stattfindet, kann es zu einer Beschädigung des FAT-Dateisystems kommen. Dabei können bei allen bis zum Zeitpunkt der Spannungsunterbrechung erfassten Snapshots Daten beschädigt werden und das USB-Speichermedium kann vollständig unlesbar werden.

Netzausfallsichere Datenaufzeichnung mittels ext4

Wenn Sie eine ext4-Dateisystem verwenden, treten als Folge einer Spannungsunterbrechung keine Dateisystemfehler auf. Berücksichtigen Sie allerdings, dass auch beim Einsatz eines ext4-Dateisystems die Daten des von dem Spannungsausfall betroffenen Snapshot trotzdem beschädigt sein können. In diesem Fall ist nur eine Beschädigung des Snapshot wahrscheinlich, dessen Daten zu dem Zeitpunkt der Spannungsunterbrechung aufgezeichnet wurden. Alle bereits zuvor gespeicherten Snapshots sind jedoch gesichert und bleiben unbeschädigt.

Details zu den Voraussetzungen für die Verwendung der Autonomen Betriebsart siehe Abschnitt *Hinweise zur Installation und zum Betrieb* [Seite 20], sowie Abschnitt *Voraussetzungen zur Verwendung der Autonomen Betriebsart* [Seite 33].
6 Schnelleinstieg

6.1 Hinweise zur Installation und zum Betrieb

Folgende Hinweise zur Installation und zum Betrieb Ihres Analyzer-Gerätes NANL-B500G-RE müssen Sie lesen und befolgen, um eine einwandfreie Installation sowie einen fehlerfreien Betrieb Ihres Gerätes zu ermöglichen.

<table>
<thead>
<tr>
<th>Hinweis</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installationsreihenfolge</td>
<td>1. Software von DVD installieren.</td>
</tr>
</tbody>
</table>
| netANALYZER-Hardware in Kommunikationsstrecke einfügen | Um den Datentransfer einer Kommunikationsstrecke zwischen zwei Geräten zu analysieren, müssen diese mit demselben TAP verbunden sein. Die Bandbreite der Netzwerkverbindung zwischen dem NANL-B500G-RE-Gerät und PC muss ausreichend groß sein, um die anfallenden Daten der vier Aufzeichnungsschnittstellen zu transportieren. NANL-B500G-RE:
| Beschädigung extern angeschlossener Hardware | NANL-B500G-RE:
• Wenn der +3,3V-Ausgang der externen EA-Schnittstelle aktiviert ist (I/O-Status-LED leuchtet orange), könnte extern angeschlossene Hardware beschädigt werden, da Spannung am Gerät anliegt.
• Wenn der +24V-Ausgang der externen EA-Schnittstelle aktiviert ist (I/O-Status-LED leuchtet rot), könnte extern angeschlossene Hardware beschädigt werden, da Spannung am Gerät anliegt.
• Bevor ein externes Gerät an das NANL-B500G-RE-Gerät angeschlossen wird, überprüfen ob der in der Software eingestellte Wert für die Spannung für das NANL-B500G-RE-Gerät korrekt ist. Weiterhin überprüfen ob das externe Gerät für die Anwendung tauglich ist. |
| Auto-Crossover und Port-Vertauschen | Wegen der Auto-Crossover-Funktion der meisten RTE-Systeme können sich am netANALYZER-Gerät die Belegungen von Port 0 und 1 bzw. Port 2 und 3 zwischen verschiedenen Testläufen ändern. Siehe dazu Abschnitt Auto-Crossover und Port-Vertauschen [Seite 55]. |
| NANL-B500G-RE-Daten sicher zum PC übertragen | Wichtig! Beide LEDs an der Gigabit-Ethernet-RJ45-Buchse auf der Rückseite des Analyzer-Gerätes NANL-B500G-RE müssen grün leuchten! Wenn die rechte LED orange leuchtet ist die Übertragungsrate zum PC kleiner 1 GBIt/s, es kann zu Bandbreitenengpässen kommen. Weiter siehe Abschnitt LINK-1000/ LINK100 (Rückseite) [Seite 71]. |
| Gesicherte Ethernet-Verbindung vom NANL-B500G-RE-Gerät zum PC | Übertragungsfehler auf der Host-Gigabit-Schnittstellenleitung (wie EMV-Störungen oder schlechte Kontakte) verursachen keinen Datenverlust. Zu starke Störungen können jedoch zu einem Verbindungsabbruch führen. |

© Hilscher 2007-2023

netANALYZER-Gerät NANL-B500G-RE | Installation, Bedienung und Hardware-Beschreibung
© Hilscher 2007-2023
DOC091110UM28DE | Revision 28 | Deutsch | 2023-01 | Freigegeben | Öffentlich
Hinweis

Autonome Betriebsart bei NANL-B500G-RE (Anschluss an USB-Speichermedium)

| • Wenn keine Lizenz für „Autonomen Betriebsart“ vorhanden ist, wird die Datei „NoLicence.txt“ auf dem USB-Speichermedium erstellt, mit dem Inhalt: "No valid netANALYZER license found for autonomous operation." Die STA1-LED blinkt rot, siehe Abschnitt SYS, STA0, STA1, I/O, LINK und RX (NANL-B500G-RE, Frontseite) [Seite 68].
| • Wenn beim Einschalten des Analyzer-Gerätes NANL-B500G-RE ein USB-Speichermedium mit einer als "bootbar" markierten Partition an das Analyzer-Gerät NANL-B500G-RE angeschlossen ist, kann das netANALYZER-Gerät unter Umständen nicht korrekt starten (SYS-LED ist gelb). |

ext4-Dateisystemunterstützung auf USB-Speichermedium

Dateien, die auf einen FAT32-formatierten USB-Speichermedium geschrieben wurden, sind nicht netzausfallsicher. Der Benutzer kann das ext4-Dateisystem auf dem USB-Speichermedium für den autonomen Betriebsmodus verwenden, um eine fehlertolerante Wiederherstellung zu gewährleisten, auch wenn die Stromversorgung des netANALYZERS während eines laufenden Schreibzugriffs auf den USB-Speichermedium unterbrochen wird.

- Um das USB-Speichermedium mit dem ext4-Dateisystem zu formatieren, muss der Benutzer einen PC mit LINUX-Betriebssystem oder einen entsprechenden zusätzlichen Dateisystemtreiber für Windows verwenden.
- Um die Dateien vom USB-Speichermedium mit dem ext4-Dateisystem zu lesen, muss der Benutzer einen PC mit LINUX-Betriebssystem oder einen entsprechenden zusätzlichen Dateisystemtreiber für Windows verwenden.

Tabelle 10: Hinweise zur Installation und zum Betrieb

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Schritt</th>
<th>Kurzbeschreibung</th>
<th>Detaillierte Informationen in Kapitel / Abschnitt</th>
</tr>
</thead>
</table>
| 1 | Software-Installation | - .NET Framework.
- Wireshark installieren.
- Windows® 10 Server wird nicht unterstützt. | Systemvoraussetzungen [Seite 17] |
| 1.1 | Voraussetzungen beachten | - Die Produkt-DVD als ZIP-Datei auf die lokale Festplatte Ihres PC herunterladen.
- Die ZIP-Datei entpacken.
- Im Wurzelverzeichnis der DVD die Datei *.exe doppelt anklicken, um das Autostartmenü zu öffnen.
- netANALYZER Scope-Software installieren.
Wenn Wireshark-Live-Aufzeichnungen gewünscht sind, WinPcap-Treiber für netANALYZER installieren. | Benutzerhandbuch Installation der Software für netANALYZER |
| 2 | Hardware-Installation | | |
| 2.1 | Warnhinweise | Die in diesem Handbuch aufgeführten Warnhinweise vor Sachschaden beachten. | Warnungen vor Sachschaden [Seite 23] |
| 2.2 | NANL-B500G-RE | Das Analyzer-Gerät NANL-B500G-RE an die RJ45-Ethernet-Buchse (1 Gb/s) der separaten Netzwerkkarte am PC anschließen. | Interaktive Betriebsart, Anschluss an PC [Seite 31] |
| 2.3 | Hardware in Kommunikationsstrecke einfügen | Hinweis! Der RJ45-Stecker darf nur für LAN verwendet werden, nicht für Telekommunikationsanschlüsse.
Das Analyzer-Gerät NANL-B500G-RE in die zu analysierende Kommunikationsstrecke einfügen. | netANALYZER-Hardware in Kommunikationsstrecke einfügen [Seite 48] |

Tabelle 11: Übersicht Installation

6.2 Übersicht Installation
6.3 Übersicht Installations-Update

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Schritt</th>
<th>Kurzbeschreibung</th>
<th>Detaillierte Informationen in Kapitel / Abschnitt / Dokumentation</th>
</tr>
</thead>
</table>
| 1 | Treiber und Software aktualisieren | • Ältere Treiber- und Softwareversionen deinstallieren.
 | | • Aktuelle Treiber und Software installieren.
 | | • Nach dem Neustart Ihres PCs die Treiber-Installation abschließen. | Installationshinweise, Installation der Software für netANALYZER-Geräte |
| 2 | NANL-B500G-RE-Firmware aktualisieren | **Hinweis:** Die IP-Adresse des Gerätes und die IP-Adresse des PC müssen im gleichen Netzwerk sein bzw. der DHCP-Server muss online sein.
 | | • Mithilfe des Programms **Ethernet Device Configuration** die IP-Adresse des Gerätes ermitteln.
 | | • Weiter mit Möglichkeit 1 oder alternativ mit Möglichkeit 2. | NANL-B500G-RE-Firmware aktualisieren [† Seite 56] |
| | | **Möglichkeit 1 (mit einem Webbrowser):**
 | | • Die ermittelte IP-Adresse in der Adressleiste des Webbrowsers eingeben.
 | | • Unterhalb Firmware image update die Firmware-Update-Datei wählen und in das Gerät laden. | NANL-B500G-RE-Firmware mit einem Webbrowser aktualisieren [† Seite 56] |
| | | **Alternative Möglichkeit 2 (über FTP):**
 | | • Die ermittelte IP-Adresse in der Adressleiste des Windows-Explorers eingeben.
 | | • In der Anmeldemaske für den FTP-Server den Benutzernamen "update" und das Kennwort "nanl-b500g-re" eingeben.

Tabelle 12: Übersicht Aktualisierung der Installation
6.4 Warnungen vor Sachschaden

Beachten Sie bei der Installation des Analyzer-Gerätes NANL-B500G-RE die folgenden Warnungen vor Sachschaden.

6.4.1 Überschreitung der zulässigen Versorgungsspannung

ACHTUNG

Geräteschaden
Der Betrieb des netANALYZER-Gerätes bei einer Versorgungsspannung überhalb des erlaubten Bereichs macht das Gerät unbrauchbar.

- Für den Betrieb des netANALYZER-Gerätes ausschließlich die vorgeschriebene Versorgungsspannung verwenden.

Angaben zur vorgeschriebenen Versorgungsspannung sind im Abschnitt Spannungsversorgung und Host-Schnittstelle zu finden.

6.4.2 Überschreitung der zulässigen Signalspannung

ACHTUNG

Geräteschaden
Alle I/O-Signal-Pins am netANALYZER-Gerät tolerieren nur die vorgeschriebene Signalspannung!

Der Betrieb des netANALYZER-Gerätes bei einer Signalspannung, welche die vorgeschriebene Signalspannung überschreitet, kann zu schweren Beschädigungen des netANALYZER-Gerätes führen!

Angaben zur vorgeschriebenen Signalspannung sind im Abschnitt Spannungsversorgung und Host-Schnittstelle zu finden.

6.4.3 Überschreitung der zulässigen Stromentnahme an der externen EA-Schnittstelle

ACHTUNG

Geräteschaden
Der netX-Chip, sowie weitere Bauelemente des NANL-B500G-RE-Gerätes, können beschädigt werden, wenn die Stromentnahme an den I/O-Signal-Pins der externen EA-Schnittstelle, die maximal erlaubten Werte überschreitet!

- Beim Betrieb des NANL-B500G-RE-Gerätes dürfen die vorgeschriebenen gerätespezifischen Maximalwerte für die Stromentnahme an den I/O-Signal-Pins der externen EA-Schnittstelle nicht überschritten werden.

Die Angaben zur maximale Stromentnahme an den I/O-Signal-Pins für die in diesem Handbuch beschriebenen Geräte sind unter Abschnitt Maximal zulässige Stromentnahme (externe EA-Schnittstelle) [Seite 18] zu finden.
6.4.4 Beschädigung extern angeschlossener Hardware

NANL-B500G-RE

ACHTUNG

Beschädigung extern angeschlossener Hardware

Wenn der +3,3V-Ausgang der externen EA-Schnittstelle aktiviert ist (I/O-Status-LED leuchtet orange), könnte extern angeschlossene Hardware beschädigt werden, da Spannung am Gerät anliegt.

Wenn der +24V-Ausgang der externen EA-Schnittstelle aktiviert ist (I/O-Status-LED leuchtet rot), könnte extern angeschlossene Hardware beschädigt werden, da Spannung am Gerät anliegt.

Hinweis zum USB-Handling in der Autonomen Betriebsart: Die .nspj-Konfiguration wird sofort wirksam, wenn das USB-Speichermedium angeschlossen ist. Das bedeutet, dass auch die GPIO-Konfiguration übernommen wird. Deshalb muss darauf geachtet werden, dass das Schalten von GPIO, z. B. auf den 24-V-Ausgang, keinen extern angeschlossenen Stromkreis beschädigt.

6.4.5 Vergabe falscher IP-Adressen, Fehlfunktionen (NANL-B500G-RE)

Wichtig:

- Bevor Sie das Analyzer-Gerät NANL-B500G-RE mit einem Netzwerk verbinden, müssen Sie sicherstellen, dass der Modus DHCP-Server-Betrieb deaktiviert ist.
6.4.6 Unterbrechung der Spannungsversorgung während Schreib- und Löschzugriffen auf Flash-Speicher

ACHTUNG

Spannungseinbruch während Schreib- und Löschzugriffen im Dateisystem

Das FAT-Dateisystem in der netX Firmware unterliegt bestimmten Einschränkungen im Betrieb derselben. Schreib- und Löschzugriffe im Dateisystem (Firmware aktualisieren, Konfiguration speichern etc.) können zur Zerstörung der FAT (File Allocation Table) führen, falls die Zugriffe durch einen Spannungseinbruch nicht abgeschlossen werden können. Ist die FAT beschädigt, wird unter Umständen eine Firmware nicht gefunden und kann nicht gestartet werden.

- Stellen Sie sicher, dass die Spannungsversorgung des Gerätes während der Schreib- und Löschzugriffe im Dateisystem (Firmware aktualisieren, Konfigurationsdownload usw.) nicht unterbrochen wird.
6.5 IP-Adresse konfigurieren

Hinweis:
Die IP-Adresse des Analyzer-Gerätes und die IP-Adresse des PC müssen im gleichen Netzwerk sein bzw. der DHCP-Server muss online sein.

Das NANL-B500G-RE-Gerät kann in drei verschiedenen Modi arbeiten:

- **Statische IP-Adresse (manuelle Zuweisung)**

- **DHCP-Client-Betrieb (externer DHCP-Server notwendig)**

- **DHCP-Server-Betrieb (Gerät arbeitet als DHCP-Server)**
 Bei dieser Option handelt es sich um die Standardeinstellung im häufigsten Anwendungsfall. Der Anwender braucht dabei keine Konfiguration vorzunehmen.

Wichtig:

DHCP-Server-Betrieb
Dazu muss Ihre LAN-Verbindung (IP V4) auf **IP-Adresse automatisch beziehen** eingestellt sein.
Statische IP-Adresse oder DHCP-Client-Betrieb

Wenn Sie Statische IP-Adresse oder DHCP-Client-Betrieb verwenden möchten, können Sie Ihr netANALYZER portables Gerät NNL-B500G-RE mithilfe des Programms Ethernet Device Configuration konfigurieren. In Ethernet Device Configuration müssen Sie das Protokoll NetIdentV2 aktivieren, damit Sie das Gerät NNL-B500G-RE finden können.

Hinweis:
Bei Problemen aufgrund fehlerhafter Einstellungen der IP-Adresse (z. B. Gerät ist nicht mehr erreichbar), starten Sie Ihr Gerät neu. Halten Sie beim Einschalten Ihres Gerätes die REC-Taste ca. 1 Minute lang gedrückt. Dann wird die Standardeinstellung für die IP-Adresse Ihres Gerätes (DHCP-Server-Betrieb) wiederhergestellt.
7 Inbetriebnahme

Um das Gerät NANL-B500G-RE zu installieren und in Betrieb zu nehmen, müssen Sie vorgehen, wie in den nachfolgenden Abschnitten beschrieben.

Beachten Sie bei der Installation und beim Betrieb des netANALYZER-Gerätes alle Angaben aus der Übersicht im Kapitel Schnelleinstieg [Seite 20].

7.1 Überprüfung der Firewall-Einstellungen

<table>
<thead>
<tr>
<th>Was</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem</td>
<td>NANL-B500G-RE arbeitet nicht mit aktiver Firewall-Software.</td>
</tr>
<tr>
<td>Fragestellung</td>
<td>Meine Firewall scheint die Kommunikation mit netANALYZER zu blockieren. Was muss ich in meinem Firewall-Regelsatz beachten?</td>
</tr>
</tbody>
</table>

Tabelle 13: Abhilfe wenn Firewall die Kommunikation blockiert

Abbildung 7: Firewall-Einstellungen
7.2 netANALYZER-Konfigurationsseite

Mit einem Webbrowser können Sie die Konfigurationsseite des Analyzer-Gerätes NANL-B500G-RE öffnen. Auf dieser Seite können Sie Einstellungen vornehmen:

- die Uhrzeit für Autonome Betriebsart,
- das Verhalten des Ventilators,
- die maximale Anzahl Snapshots für die Autonome Betriebsart
- und falls notwendig, die Firmware aktualisieren.

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Funktion</th>
<th>Beschrieben in Abschnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware image version (1)</td>
<td>Zeigt die Firmware-Image-Version des Gerätes an.</td>
<td>Uhrzeit für Autonome Betriebsart einstellen [P Seite 35]</td>
</tr>
<tr>
<td>Time configuration (2)</td>
<td>Stellt die Uhrzeit des Gerätes ein. Notwendig für die Zeitstempel einer Datenaufzeichnung.</td>
<td>Uhrzeit für Autonome Betriebsart einstellen [P Seite 35]</td>
</tr>
<tr>
<td>Fan behaviour (3)</td>
<td>Stellt die Temperaturschwelle für den Ventilator ein.</td>
<td>Temperatursteuerung des Ventilators (NANL-B500G-RE) [P Seite 61]</td>
</tr>
<tr>
<td>Snapshot behaviour in autonomous mode (4)</td>
<td>Stellt die maximale Anzahl Snapshots ein, die auf dem USB-Speichermedium gespeichert werden sollen.</td>
<td>Maximale Anzahl Snapshots für Autonome Betriebsart einstellen [P Seite 39]</td>
</tr>
<tr>
<td>Firmware image update (5)</td>
<td>Firmware aktualisieren.</td>
<td>NANL-B500G-RE-Firmware aktualisieren [P Seite 56]</td>
</tr>
<tr>
<td>Apply changes and restart device (6)</td>
<td>Schaltfläche, um die Einstellungen oder eine neue Firmware zu übernehmen. Das Gerät wird neu gestartet.</td>
<td>-</td>
</tr>
<tr>
<td>Information about autonomous mode operation (7)</td>
<td>Weitere Informationen z. B. zur Autonomen Betriebsart, zu Lizenzen, usw.</td>
<td>-</td>
</tr>
<tr>
<td>Misc (8)</td>
<td>Angabe wichtiger Referenzen für weitere Informationen</td>
<td>-</td>
</tr>
<tr>
<td>Third party license information (9)</td>
<td>Verweis auf Informationen über verwendete Bibliotheken von Drittanbietern</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 14: netANALYZER-Konfigurationsseite

- Um die Konfigurationsseite anzuzeigen, geben Sie die IP-Adresse des Analyzer-Gerätes in die Adresszeile des Browsers ein.
Abbildung 8: netANALYZER-Konfigurationsseite
7.3 Interaktive Betriebsart, Anschluss an PC

Hinweis:
Die Installationsreihenfolge muss eingehalten werden:
1. Software von DVD installieren.
2. NANL-B500G-RE-Gerät anschließen.

Gehen Sie beim Anschluss des Analyzer-Gerätes NANL-B500G-RE an den PC wie folgt vor:

Schritt 1: Sicherheitsvorkehrungen

ACHTUNG Geräteschaden
- Die angelegte Versorgungsspannung am NANL-B500G-RE-Gerät darf keinesfalls 30 V übersteigen, sonst kann es zur Zerstörung des Gerätes kommen.

Schritt 2: Gerät anschließen
- Eine **Ethernet-Verbindung** vom Analyzer-Gerät NANL-B500G-RE zum PC herstellen.

Hinweis:
Bei der Ethernet-Verbindung vom Analyzer-Gerät NANL-B500G-RE zum PC handelt es sich um eine gesicherte Verbindung. Übertragungsfehler auf der Host-Gigabit-Schnittstellenleitung (wie EMV-Störungen oder schlechte Kontakte) verursachen keinen Datenverlust. Zu starke Störungen können jedoch zu einem Verbindungsabbruch führen.

- Das Ethernet-Kabel auf der Gehäuserückseite in die Gigabit-RJ45-Ethernet-Buchse **UPLINK 1 Gb/s** einstecken.
- Das Ethernet-Kabel an die RJ45-Ethernet-Buchse (1 Gb/s) der separaten Netzwerkkarte am PC anschließen.
- Das Analyzer-Gerät NANL-B500G-RE an eine **externe 24V-Spannungsversorgung** anschließen.

Wichtig:
Beide LEDs an der Gigabit-Ethernet-RJ45-Buchse auf der Rückseite des Analyzer-Gerätes NANL-B500G-RE müssen grün leuchten! Wenn die rechte LED orange leuchtet ist die Übertragungsrate zum PC kleiner 1 GBit/s, es kann zu Bandbreitenengpässen kommen.
7.4 Autonome Betriebsart, Randbedingungen und Voraussetzungen

"Live Dump Modus" und "Snapshot-Modus"

Es gibt zwei Möglichkeiten, den netANALYZER im autonomen Modus ohne PC zu betreiben.

- Im Modus "Live Dump Mode" speichert das Gerät den gesamten aufgezeichneten Datenverkehr direkt auf ein angeschlossenes USB-Speichermedium. Die erstellten PCAP-Dateien füllen den gesamten USB-Speicher. Wenn der USB-Speicher voll ist, werden die ältesten aufgenommenen Ethernet-Frames durch neuere überschrieben. Um diesen Modus zu verwenden, schließen Sie einfach einen leeren USB-Speicher an das Gerät an und drücken Sie die REC-Taste. Weitere Angaben dazu siehe Abschnitt Vollständige Aufzeichnung (Live-Dump-Mode) [† Seite 42].

Wichtig:

Falls mit einem Ausfall der Spannungsversorgung des NANL-B500G-RE während der Aufzeichnung zu rechnen ist, kann das USB-Speichermedium mit einem ext4-Dateisystem verwendet werden, um einem Datenverlust vorzubeugen. Weitere Angaben siehe Abschnitt Hinweise zur Installation und zum Betrieb [† Seite 20].
7.4.1 PCAP-Dateien (Dateiname und -größe)

Die erstellten PCAP-Dateisätze werden mit der Abkürzung (Prefix) „pcapdump“, einer 5-stelligen laufenden Nummer (Sequenznummer) bzw. einem Zeitstempel benannt und haben die Dateierweiterung „.pcap“.

Dateiname: pcapdump_xxxxx_YYYYMMDDhhmmss.pcap

xxxxx = 00000, 00001, 00002 (Sequenznummer*)
YYYYMM...... Zeitpunkt des Aufzeichnungsstarts (Zeitstempel)

Die PCAP-Dateien haben eine Dateigröße von bis zu 50 MByte.

*Das USB-Speichermedium wird während der Aufzeichnung mit einzelnen Aufzeichnungsdateien gefüllt. Ist das USB-Speichermedium voll, so werden im Laufe der Aufzeichnung die ältesten Dateien überschrieben. Dieses Verhalten ist anhand der Sequenznummer erkennbar.

Hinweis:

7.4.2 Voraussetzungen zur Verwendung der Autonomen Betriebsart

- netANALYZER-Image-Version 1.2.0.0 (oder höher)
- Lizenz (für netANALYZER Scope) 8582.060 LIC/NANL/SA
 Wenn keine Lizenz für „Autonome Betriebsart“ vorhanden ist, wird die Datei „NoLicence.txt“ auf dem USB-Speichermedium erstellt, mit dem Inhalt: "No valid netANALYZER license found for autonomous operation." Die STA1-LED blinkt rot, siehe Abschnitt SYS, STA0, STA1, I/O, LINK und RX (NANL-B500G-RE, Frontseite) [↑ Seite 68].
- Für „Snapshot-Mode“: Zusätzlich erforderliche Lizenz 8582.001 LIC/SCPBS
- USB-Speichermedium, FAT32-formatiert, mindestens 100 MByte Speicherkapazität
Falls mit einem Ausfall der Spannungsversorgung des NANL-B500G-RE während der Aufzeichnung zu Rechnen ist, kann das USB-Speichermedium mit einem ext4-Dateisystem verwendet werden, um einem Datenverlust vorzubeugen. Weitere Angaben siehe Abschnitt Hinweise zur Installation und zum Betrieb [{[1]} Seite 20].

 Hinweis:
Während der Aufzeichnung werden dauerhaft Daten auf das USB-Speichermedium geschrieben. Beachten Sie, dass einige Speichermedien eine begrenzte Schreib-Lebensdauer besitzen und somit im Dauerbetrieb ggf. die Lebenszeit des USB-Speichermediums reduziert wird.

- Neustart des Netzwerks für EtherNet/IP als Voraussetzung zur Prozesswertanalyse im Autonomen Betrieb im Snapshot-Mode

 Wichtig:

7.4.3 Voreinstellungen zum Verhalten der GPIO-Signale im „Live-Dump-Mode“

Im Funktionsmodus „Live-Dump-Mode“ ist folgende Default-Konfiguration für die GPIOs konfiguriert:

- 24 V
- GPIO 0: Eingang steigende Flanke
- GPIO 1: Eingang steigende Flanke
- GPIO 2: Eingang fallende Flanke
- GPIO 3: Eingang fallende Flanke
7.4.4 Uhrzeit für Autonome Betriebsart einstellen

Das Analyzer-Gerät NANL-B500G-RE hat eine Onboard-RTC (Echtzeituhr). Die Uhr ist gepuffert und hält die Zeit ca. 10 Tage ohne angeschlossene Stromversorgung. Wenn das NANL-B500G-RE-Gerät erkannt hat, dass die Uhrzeit im Gerät nicht eingestellt ist oder die RTC-Pufferung fehlgeschlagen ist (z. B. weil das Gerät mehrere Wochen nicht verwendet wurde), blinkt die STA1-LED auf der Gerätevorderseite orange bei 1 Hz (siehe Abschnitt SYS, STA0, STA1, I/O, LINK und RX (NANL-B500G-RE, Frontseite) [Seite 68]).

Hinweis:
Wenn die Uhrzeit nicht eingestellt ist, ist eine autonome Datenerfassung noch möglich, aber die Zeitstempel der aufgezeichneten Ethernet-Frames haben einen absoluten Versatz zu einem vergangenen Datum. Die relativ gemessenen Zeitstempel zwischen den Frames werden weiterhin hochgenau erfasst.

Uhrzeit für Autonome Betriebsart einstellen

Hinweis:
Beim Setzen der Uhrzeit über die Webseite netANALYZER configuration wird das Analyzer-Gerät neu gestartet. Eine laufende Datenaufzeichnung wird so abgebrochen.

Um die Uhrzeit über einen Webbrowser einzustellen, nehmen Sie die folgenden Schritte vor.

- Die Webseite netANALYZER configuration erscheint.
Wählen Sie unter **New time zone** die Zeitzone aus.

Stellen Sie unter **New time** das Datum und die Uhrzeit ein.

Klicken Sie **Apply changes and restart device** an.

Das neue Datum und die Uhrzeit werden im Analyzer-Gerät NANL-B500G-RE gespeichert und dienen dann als Basis für den Zeitstempel für jeden aufgenommenen Frame.

Das Gerät wird neu gestartet.
7.4.5 Erforderliche USB-Speicherkapazität für Snapshot-Mode theoretisch abschätzen

Um ein Volllaufen des USB-Speichers bei der Datenaufzeichnung in der Autonomen Betriebsart im Snapshot-Mode zu vermeiden, muss die Kapazität des USB-Speichermediums ausreichend dimensioniert sein und Reserven haben, um die bei der Datenauszeichnung mit netANALYZER voraussichtlich anfallende Datenmenge aufnehmen zu können. Um dies zu erreichen, können Sie eine theoretische Abschätzung der erforderlichen Größe des USB-Speichermediums vornehmen.

Die Größe eines Snapshots variiert in Abhängigkeit vom Anwendungsfall, von der Netzauslastung, sowie von der Zahl der Ethernet-Frames, die in der Aufzeichnungsperiode anfallen.

Beispiel

Abbildung 10: Schematische Darstellung der Reservekapazität des USB-Speichermediums bei einer maximalen Anzahl Snapshots = „4“
Abschätzung der Schnappschussgröße

Wie viele Snapshots können auf dem USB-Speichermedium gespeichert werden, wenn der netANALYZER im autonomen Betriebsart verwendet wird?

Da .nsprj-Snapshot-Dateien komprimiert werden, hängt die Größe einer Datei auch stark von der Komprimierbarkeit der erfassten Daten ab.

Es wird daher empfohlen, die Größe einer Snapshot-Datei in Abhängigkeit vom konkreten Anwendungsfall der Aufzeichnung festzulegen. Ermitteln Sie die effektive Snapshot-Dateigröße über eine speziell dafür durchgeführte Testmessung.

Dennoch kann von einem folgenden Worst-Case-Szenario ausgegangen werden:

netANALYZER benötigt für temporäre Operationen mindestens 2048 MByte (=2 GByte) freien Dateispeicher.

Somit wäre die absolute Worst-Case-Betrachtung für die Anzahl der speicherbaren Snapshots: \(\text{<Anzahl der Snapshots>} = (\text{<Kapazität des Speichermediums>} - 2048 \text{ MBytes Temporärer Speicherplatz}) / 370 \text{ Mbytes pro Snapshot} \)

So kann beispielsweise ein 256 GByte (=262144 MByte) Speicher 702 Snapshots speichern: \((262144 \text{ MBytes} - 2048 \text{ MBytes}) / 370 \text{ Mbytes} = 702 \text{ Schnappschüsse} \)

Wie bereits erwähnt, ist dies eine absolute Worst-Case-Betrachtung. Echte Snapshot-Dateien wären aufgrund der für .nsprj-Snapshot-Dateien verwendeten Datenkompression viel kleiner.
7.4.6 Maximale Anzahl Snapshots für Autonome Betriebsart einstellen

Für die Datenaufzeichnung in der Autonomen Betriebsart im Snapshot-Mode können Sie festlegen welche maximale Anzahl Snapshots auf dem angeschlossenen USB-Speichermedium gespeichert werden sollen.

Wichtig:
Vermeiden Sie ein Volllaufen des USB-Speichers, indem Sie ein USB-Speichermedium mit für Ihren Anwendungsfall ausreichender Speicherreserve verwenden oder eine entsprechend niedrigere maximale Anzahl Snapshots festlegen. Siehe auch Abschnitt *Erforderliche USB-Speicherkapazität für Snapshot-Mode theoretisch abschätzen* [Seite 37].

Um die maximale Anzahl Snapshots über einen Webbrowser einzustellen, nehmen Sie die folgenden Schritte vor.

- Die Webseite netANALYZER configuration erscheint.
Inbetriebnahme

netANALYZER

netANALYZER image version: 1.10.0.0

Time configuration

Current time of netANALYZER: April 25, 2019 10:53:40 Europe/Berlin

New time zone: Europe/Berlin

Fan behaviour

Select fan temperature control behaviour: High temperature threshold (warm device, but silent operation)

Snapshot behaviour in autonomous mode

Select how many snapshots shall be stored at maximum on the USB memory (0 = until memory is full).

For more information, refer to the notes given below.

Firmware image update

Durchschen Keine Datei ausgewählt
Upload to device: Note: After uploading, firmware image update will be applied with next device restart.

Apply changes and restart device

Information about autonomous mode operation

There exist two ways to operate the netANALYZER in autonomous mode without PC:

- In the "Live dump mode" mode, the device stores the entire recorded data traffic directly to a connected USB mass storage device. The created PCAP files fill the entire USB memory. When the USB memory is full, the oldest captured frames are overwritten by newer ones. To use this mode, simply connect an empty USB memory to the device and press the REC button.
- The "Snapshot mode" is suitable for long-term measurements: The device stores an Ethernet frame snapshot each time a trigger condition occurs. The trigger condition was previously defined by a "snap" trigger block in netANALYZER Scope software. To use this mode, define a trigger condition in netANALYZER Scope, store the netANALYZER Scope project file (.npsf) file in the USB memory root folder, connect the USB memory to the netANALYZER device and press the REC button. The number of snapshots stored depends on the specified maximum number (see setting above). If "0" is specified, snapshots are stored until the USB memory is full. After that, no more snapshots will be stored. If a number greater than "0" is specified, the USB memory will contain this maximum number of snapshots. When the maximum amount is reached, the oldest snapshots are automatically deleted. Thus, the USB memory contains only the most recent snapshot events. Note that if there is not enough space left on the USB memory, no more snapshots will be taken.

Note that autonomous operation mode requires an additional license.

Misc

Check out www.hilscher.com and kb.hilscher.com for software updates and further information about netANALYZER.

Third party license information

See third party license information.
Inbetriebnahme

- Stellen Sie unter **Snapshot behaviour in autonomous mode** die maximale Anzahl der auf dem USB-Speichermedium zu speichernden Snapshots ein.
 - Wenn "0" angegeben ist, werden Schnappschüsse gespeichert, bis der USB-Speicher voll ist. Danach werden keine Schnappschüsse mehr gespeichert.

- Klicken Sie **Apply changes and restart device** an.
 - Der eingestellte Wert wird im Analyzer-Gerät NANL-B500G-RE gespeichert und legt die maximale Anzahl Snapshots fest, die in der Autonomen Betriebsart im Snapshot-Mode auf dem USB-Speichermedium abgelegt werden.
 - Das Gerät wird neu gestartet.

7.4.7 NANL-B500G-RE in der Autonomen Betriebsart starten bzw. stoppen

Starten: Rote Taste REC an der Gerätevorderseite kurz drücken.

Stoppen: Rote Taste REC an der Gerätevorderseite mindestens 1 Sekunde gedrückt halten.
7.5 Autonome Betriebsart, Aufzeichnung auf USB-Speichermedium

7.5.1 Vollständige Aufzeichnung (Live-Dump-Mode)

Gehen Sie wie folgt vor, wenn Sie das Analyzer-Gerät NANL-B500G-RE in der Autonomen Betriebsart im Live-Dump-Mode verwenden und Daten während der gesamten Zeitspanne eines Analysevorgangs aufzeichnen wollen:

Schritt 1: Sicherheitsvorkehrungen

ACHTUNG Geräteschaden

- Die angelegte Versorgungsspannung am NANL-B500G-RE-Gerät darf keinesfalls 30 V übersteigen, sonst kann es zur Zerstörung des Gerätes kommen.

Schritt 2: Gerät mit USB verbinden, Autonome Betriebsart im „Live-Dump-Mode“ verwenden und Daten für Auswertung auf PC übertragen

- Das Analyzer-Gerät NANL-B500G-RE an eine externe 24V-Spannungsversorgung anschließen.

- Das USB-Speichermedium (mit mindestens 100 MByte Speicherkapazität) an die USB-Buchse an der Rückseite des Analyzer-Gerätes NANL-B500G-RE anschließen.

- Bei Verwendung eines USB-Gerätes mit einer Leistungsaufnahme über 500 mA eine eigene Spannungsversorgung anschließen; bei Bedarf ist auch eine Einspeisung über einen USB-Hub möglich.

- Das Analyzer-Gerät NANL-B500G-RE zeigt die Autonome Betriebsart im Live-Dump-Mode als eigenen LED-Zustand an (STA0-LED /Orange / Ein, siehe Abschnitt SYS, STA0, STA1, I/O, LINK und RX (NANL-B500G-RE, Frontseite) [Seite 68]

- Um die Aufzeichnung zu starten, die rote Taste REC auf der Gerätevorderseite kurz drücken.

Hinweis:

- Das Analyzer-Gerät NANL-B500G-RE beginnt mit der Aufzeichnung des Datenverkehrs in .pcap-Dateien, die im Wurzelverzeichnis des USB-Speichermediums abgelegt werden.

- Um die Aufzeichnung zu stoppen, die rote Taste REC auf der Gerätevorderseite mindestens 1 Sekunde lang drücken.
Hinweis:

- Das USB-Speichermedium aus der USB-Buchse an der Geräterückseite ziehen und an einen PC anschließen.
- .pcap-Dateien herunterladen und in Wireshark öffnen bzw. nach netANALYZER-Scope importieren.
7.5.2 Ausschnitte aufzeichnen (Snapshot-Mode)

Gehen Sie wie folgt vor, wenn Sie das Analyzer-Gerät NANL-B500G-RE in der Autonomen Betriebsart im Snapshot-Mode mit einem USB-Speichermedium verwenden wollen und über festgelegte Trigger nur Daten aus bestimmten Zeitfenstern aufzeichnen wollen:

Schritt 1: Sicherheitsvorkehrungen

ACHTUNG Geräteschaden

- Die angelegte Versorgungsspannung am NANL-B500G-RE-Gerät darf keinesfalls 30 V übersteigen, sonst kann es zur Zerstörung des Gerätes kommen.

Schritt 2: Gerät mit USB verbinden, Autonome Betriebsart im „Snapshot-Mode“ verwenden und Daten für Auswertung auf PC übertragen

- Das Analyzer-Gerät NANL-B500G-RE an eine externe 24V-Spannungsversorgung anschließen.
- Ein netANALYZER Scope-Projekt erstellen und die Trigger-Kriterien für die Autonome Betriebsart konfigurieren.
- Das netANALYZER Scope-Projekt als .nsprj-Datei abspeichern.
- Die .nsprj-Datei in das Wurzelverzeichnis eines USB-Speichermediums kopieren.
- Das USB-Speichermedium (mit ausreichend freier Speicherkapazität zur Ablage von Snapshots, siehe Abschnitt Autonome Betriebsart, Randbedingungen und Voraussetzungen [Seite 32]) an die USB-Buchse an der Rückseite des Analyzer-Gerätes NANL-B500G-RE anschließen.
- Bei Verwendung eines USB-Gerätes mit einer Leistungsaufnahme über 500 mA eine eigene Spannungsversorgung anschließen; bei Bedarf ist auch eine Einspeisung über einen USB-Hub möglich.

Das Analyzer-Gerät NANL-B500G-RE zeigt die Autonome Betriebsart (Snapshot-Mode) als eigenen LED-Zustand an (STA0-LED /Orange / blinkt zyklisch mit 1 Hz, siehe Abschnitt SYS, STA0, STA1, I/O, LINK und RX (NANL-B500G-RE, Frontseite) [Seite 68]).

- Um die Aufzeichnung zu starten, die rote REC-Taste auf der Gerätevorderseite kurz drücken, sofern in der Projektconfiguration in den Einstellungen für die Autonome Betriebsart das Autostart-Verhalten auf "Manuell" steht.

Hinweis:

Jedes Mal, wenn ein Trigger-Kriterium erfüllt ist, wird ein Snapshot auf dem USB-Speichermedium abgelegt.

Hinweis:
Der interne Speicher des Analyzer-Gerätes NANL-B500G-RE kann maximal 300 MB an Ethernet-Frame-Daten zwischenspeichern, so dass für Schnappschüsse maximal diese Historientiefe zur Verfügung steht. Abhängig von der Netzwerklast ergibt sich hieraus die maximal erfassbare Zeitdauer.

Um die Aufzeichnung zu stoppen, die rote Taste REC auf der Gerätevorderseite mindestens 1 Sekunde lang drücken.

Hinweis:

Die Anzahl der gespeicherten Schnappschlüsse hängt von der angegebenen maximalen Anzahl ab (siehe Abschnitt Maximale Anzahl Snapshots für Autonome Betriebsart einstellen [Seite 39]).

Das USB-Speichermedium aus der USB-Buchse an der Geräterückseite ziehen und an einen PC anschließen.

Die generierten .nsprj-Dateien befinden sich im Verzeichnis "saved_snapshots". Sie können in netANALYZER Scope geöffnet werden.
7.5.3 Ethernet-Frame-Verluste in Wireshark anzeigen

Werden beim Autonomen Betrieb des Analyzer-Gerätes NANL-B500G-RE bei der Datenübertragung über Ethernet sehr hohe Übertragungsraten verwendet und die Schreibrate zum USB-Speichermedium steigt entsprechend, kommt es beim Abspeichern auf dem USB-Speichermedium zu Ethernet-Frame-Verlusten, d. h. es werden Frames verworfen und es findet keine vollständige Aufzeichnung der übertragenen Analysedaten statt.

Ab der Wireshark-Version 2.3 können die verloren gegangenen Frames sichtbar gemacht werden. Wird eine betroffene pcap-Datei in Wireshark geöffnet, erscheinen in der Frame-Ansicht der Eintrag (1) „Buffer overflow“ (frames will be dropped until next buffer recovery) und der zugehörige Zeitstempel, wodurch angezeigt wird, dass ab diesem Zeitpunkt Ethernet-Frame-Verluste aufgetreten sind. D. h. es konnten keine Frames mehr gespeichert werden, bzw. einzelne Frames wurden verworfen. Der Eintrag (2) „Buffer recovery“ (Frame reception has recovered) und der zugehörige Zeitstempel zeigen an, dass das System sich erholt hat, die Netzlast zurückgegangen ist und wieder volle Schreibkapazität erreicht wurde. Ab diesem Zeitpunkt konnten alle Ethernet-Frames wieder lückenlos empfangen werden. Im folgenden Screenshot sind die beiden Ereignisse sichtbar, die den Beginn und das Ende des Pufferüberlaufs kennzeichnen. Vor dem Eintrag (1) bzw. nach dem Eintrag (2) werden alle Frames vollständig empfangen, dazwischen muss von Ethernet-Frame-Verlusten ausgegangen werden.

Abbildung 12: Pufferüberlauf
Hinweis:
Wenn die STA1-LED 1x rot blinkt (=FIFO-Overflow), erfolgt in Wireshark der Eintrag (1) „Buffer overflow“. D. h., es hat ein Pufferüberlauf stattgefunden und Frames wurden verworfen.

Mögliche Ursachen von Ethernet-Frame-Verlusten und Abhilfe

Ist die maximale Übertragungsrate am Ethernet größer als die Schreibrate am USB-Speichermedium, können Ethernet-Frame-Verluste auftreten. Dies betrifft insbesondere Anlagen, die mit sehr hohen Lasten bei der Datenübertragung am Bus arbeiten.

- Zeichnen Sie nur auf einem TAP auf, um die Datenlast zu reduzieren. Es ist nicht möglich alle Daten auf das USB-Speichermedium zu schreiben.
- Bitte beachten Sie, dass in der „Autonomen Betriebsart“ bei sehr hohen Netzlasten größer als 25% (bidirektional, bzw. 50 % unidirektional), bei Aufzeichnung auf einem TAP, gegebenenfalls nicht alle Frame-Daten aufgezeichnet werden können. Diese Angaben beziehen sich auf dauerhafte Durchschnittslasten. Kurze Lastspitzen können auch höher ausfallen.
- Wechseln Sie in den interaktiven Betrieb mit PC, um höhere Datenraten zu erfassen.

Hinweis:
Verwenden Sie gegebenenfalls eine externe USB-Festplatte, da Sie damit gegenüber einem USB-Stick höhere Schreibraten erzielen können.
7.6 netANALYZER-Hardware in Kommunikationsstrecke einfügen

Wichtig:

Hinweis:
1. Um den Datentransfer einer Kommunikationsstrecke zwischen zwei Geräten zu analysieren, müssen diese mit demselben TAP verbunden sein.
2. Der RJ45-Stecker darf nur für LAN verwendet werden, nicht für Telekommunikationsanschlüsse.

In den nachfolgenden Abschnitten werden typische Anwendungsfälle beschrieben.
7.6.1 Anwendungsfall 1

Die Kommunikation zwischen zwei Geräten aufzeichnen und analysieren

- Um die Kommunikation zwischen zwei Ethernet-Geräten aufzuzeichnen, das Analyzer-Gerät NANL-B500G-RE über Ethernet-Kabel anschließen (wie im Bild dargestellt).
- Beide Ethernet-Kabel nur in TAP A (oder nur in TAP B) anschließen.

Abbildung 13: Anwendungsfall 1

Des Weiteren analysiert das Analyzer-Gerät die Anzahl fehlerhafter Ethernet-Frames.

Eine Durchlaufzeit der Frames durch ein Gerät kann so nicht ermittelt werden. Siehe dazu Anwendungsfall 2 [Seite 50].
7.6.2 Anwendungsfall 2

Anwendungsfall 2 ist der typische Anwendungsfall

Hierbei kann das Analyzer-Gerät NANL-B500G-RE folgende Vorgänge und Parameter analysieren:

- die Kommunikation zwischen jeweils zwei Geräten für jeweils zwei Kanäle,
- die Durchlaufzeit durch das Gerät,
- die Zykluszeit sowie den Jitter bei zyklisch ablaufenden Protokollen,
- die Änderungen der Daten im Ethernet-Frame durch das Gerät,
- die Anzahl fehlerhafter Ethernet-Frames.

Um die Kommunikation zweier Kanäle aufzuzeichnen, das Analyzer-Gerät NANL-B500G-RE über Ethernet-Kabel anschließen (wie im Bild dargestellt).

![Abbildung 14: Anwendungsfall 2](image_url)
7.6.3 Anwendungsfall 3

Wie Anwendungsfall 2, jedoch mit mehr Geräten

Dieser Anwendungsfall entspricht dem Anwendungsfall 2, jedoch mit dem Unterschied, dass mehrere Geräte zwischen den beiden analysierten Ethernet-Kanälen liegen.

Hierbei kann das Analyzer-Gerät NANL-B500G-RE folgende Vorgänge und Parameter analysieren:

- die Kommunikation für zwei Kanäle,
- die Durchlaufzeit durch mehrere Geräte,
- die Zykluszeit sowie der Jitter bei zyklisch ablaufenden Protokollen,
- die Änderungen der Daten im Ethernet-Frame durch mehrere Geräte,
- die Anzahl fehlerhafter Ethernet-Frames.

Um die Kommunikation zweier Kanäle aufzuzeichnen, das Analyzer-Gerät NANL-B500G-RE über Ethernet-Kabel anschließen (wie im Bild dargestellt).

Abbildung 15: Anwendungsfall 3
7.6.4 Anwendungsfall 4

Wie Anwendungsfall 2, jedoch mit Analyse von Eingangssignalen

Hierbei kann das Analyzer-Gerät NANL-B500G-RE folgende Vorgänge und Parameter analysieren:

- die Kommunikation zwischen zwei Geräten für zwei Kanäle,
- die Durchlaufzeit durch das Gerät,
- die Zykluszeit sowie der Jitter bei zyklisch ablaufenden Protokollen,
- die Änderungen der Daten im Ethernet-Frame durch das Gerät,
- die Verarbeitungszeit des Protokoll-Stacks vom Empfang des Ethernet-Frames bis zum Umschalten des digitalen Ausgangs-Signals,
- die Eingangssignalereignisse anhand von Zeitstempeln,
- die Anzahl fehlerhafter Ethernet-Frames.

ACHTUNG Geräteschaden

- Für den Betrieb des NANL-B500G-RE-Gerätes an den I/O-Signal-Pins der externen EA-Schnittstelle insgesamt maximal 1 mA (bei 3,3V) bzw. 600 mA (bei 24V) Strom entnehmen. Andernfalls können der netX-Chip sowie weitere Bauelemente beschädigt werden.

ACHTUNG Beschädigung extern angeschlossener Hardware

NANL-B500G-RE

- Wenn der +3,3V-Ausgang der externen EA-Schnittstelle aktiviert ist (I/O-Status-LED leuchtet orange), könnte extern angeschlossene Hardware beschädigt werden, da Spannung am Gerät anliegt.

- Wenn der +24V-Ausgang der externen EA-Schnittstelle aktiviert ist (I/O-Status-LED leuchtet rot), könnte extern angeschlossene Hardware beschädigt werden, da Spannung am Gerät anliegt.

Um die Kommunikation zweier Kanäle aufzuzeichnen, das Analyzer-Gerät NNL-B500G-RE über Ethernet-Kabel anschließen (wie im Bild dargestellt).

Abbildung 16: Anwendungsfall 4 – Messung der Laufzeiten im Gerät
7.7 Begrenzung der Datenlast

Probleme beim Erfassen hoher Netzwerklasten

Bei der Aufzeichnung mit extrem hohen Netzwerklasten an allen 4 netANALYZER-Ports wird die Aufzeichnung mit dem Fehlercode 0xC066000C (kein Intram-Puffer) oder 0xC0660004 (kein DMA-Kanal) beendet.

Bei gleichzeitiger Aufzeichnung von 4 Ethernet-Ports kann eine maximale Netzwerklast von ca. 96% überwacht werden. Für höhere Lasten steht ein spezieller Hochlast-Aufzeichnungsmodus zur Verfügung. Für weitere Details siehe „Hochlast-Aufzeichnungsmodus“. Der Hochlast-Aufzeichnungsmodus wird in der netANALYZER Scope-Software eingestellt.

Hinweis:
Diese Einschränkung gilt nicht, wenn nur an 2 Ethernet-Ports aufgezeichnet wird.

Mögliche Problembesehung:
1. Verwenden Sie die Hardware-Filter, um bestimmte Frames herauszufiltern, die nicht von Interesse sind.
3. Nur auf einem TAP aufnehmen, dann können Sie 100% Last auf diesem TAP erfassen.
7.8 Auto-Crossover und Port-Vertauschen

Beispiel:

Abbildung 17: Beispiel - Auto-Crossover und Port-Vertauschen

Wenn beide Geräte Auto-Crossover verwenden, besteht die Möglichkeit, dass bei Folgemessungen Port 0 und Port 1 vertauscht sind. Dies gilt ebenso für Port 2 und Port 3.

Schematischer Aufbau eines TAPs

Abbildung 18: Aufbau eines TAP, rechts Ports von Gerät 1 und Gerät 2 vertauscht

Aus dem schematischen Aufbau eines TAPs ist zu erkennen, welche Auswirkungen ein Vertauschen der Leitungen der beiden Geräte hat.

Abhilfe

Abhilfe ist möglich, indem Rückschlüsse aus den Aufzeichnungen von zwei zeitlich aufeinanderfolgenden Testläufen gezogen werden. In den Aufzeichnungen zum zweiten Testlauf sind gegenüber dem ersten Testlauf veränderte Port-Nummern zu finden.
7.9 NANL-B500G-RE-Firmware aktualisieren

Das Gerät bietet Ihnen zwei Möglichkeiten, um die Firmware zu aktualisieren.

- **NANL-B500G-RE-Firmware mit einem Webbrowser aktualisieren** [Seite 56]
- **NANL-B500G-RE-Firmware über FTP aktualisieren** [Seite 58]

7.9.1 NANL-B500G-RE-Firmware mit einem Webbrowser aktualisieren

Hinweis:

Voraussetzungen

- Sie benötigen die Firmware-Update-Datei *nanl-b500g-re.update*. Die Firmware-Update-Datei befindet sich auf der Produkt-DVD im Verzeichnis *NANL-B500G-RE firmware update*.

Schritt 1: IP-Adresse des Gerätes ermitteln

- Das Programm *Ethernet Device Configuration* öffnen.
- Nach Geräten suchen.
- Ihr Gerät NANL-B500G-RE wird angezeigt.

![Abbildung 19: Ethernet Device Configuration - NANL-B500G-RE gefunden (Beispiel)]

Schritt 2: Aktuelles Firmware Image hochladen

- Öffnen Sie einen Browser.
- Geben Sie in der Adressleiste des Webbrowser die IP-Adresse ein und drücken Sie die Enter-Taste.
- Die netANALYZER-Konfigurationsseite wird angezeigt.
- Unterhalb **Firmware image update**: Klicken Sie auf **Durchsuchen**.
- Ein Dateiauswahldialog wird angezeigt.
- Klicken Sie **Öffnen**.
- Klicken Sie **Upload to device**.
- Während des Hochladens wird **uploading** vor der Schaltfläche **Upload to device** angezeigt. Dieser Vorgang dauert wenige Sekunden.
- Der Vorgang ist abgeschlossen sobald **done** vor der Schaltfläche **Upload to device** angezeigt wird.
- Das Gerät ist vorbereitet.
- Damit das Gerät die neue Firmware-Version übernimmt, klicken Sie **Apply changes and restart device**.
- Der Webbrowser zeigt **Waiting for device restart** an.
- Das Gerät wird neu gestartet und führt ein Firmware-Update aus.
- **ACHTUNG** Unterbrechen Sie während dem Firmware-Update keinesfalls die Spannungsversorgung zum Gerät und schalten das Gerät keinesfalls aus!
- Warten Sie, bis das Gerät wieder voll funktionsfähig ist.

Wichtig:

Warten Sie, bis die LEDs für ca. 10 Sekunden lang im Zustand „SYS-LED = grün, STA0-LED = rot, STA1-LED = aus“ bleiben. Während des Aktualisierungsvorgangs können die LEDs in verschiedenen Farben blinken.

- Ihr Gerät ist jetzt aktualisiert.

Schritt 3: Prüfen, ob das Update erfolgreich war

- Aktualisieren Sie in Ihrem Webbrowser die netANALYZER-Konfigurationsseite, z. B. indem Sie die F5-Taste drücken (browserabhängig).
- Prüfen Sie die neben **netANALYZER image version** angezeigte Version.
7.9.2 NANL-B500G-RE-Firmware über FTP aktualisieren

Hinweis:

Schritt 1: IP-Adresse des Gerätes ermitteln
- Das Programm *Ethernet Device Configuration* öffnen.
- Nach Geräten suchen.
- Ihr Gerät NANL-B500G-RE wird angezeigt.

![Abbildung 20: Ethernet Device Configuration - NANL-B500G-RE gefunden (Beispiel)](image)

Schritt 2: Aktuelle Firmware in netANALYZER-FTP-Server-Verzeichnis kopieren

- Öffnen Sie den Windows-Explorer.
- Die Eingabemaske des Windows-Explorer Anmelden als erscheint.
- Geben Sie in der Eingabemaske des Windows-Explorer Anmelden als unter Benutzername "update" ein und als Kennwort "nanl-b500g-re" (ohne Anführungszeichen).

Abbildung 21: Anmeldemaske für FTP-Server

- Das netANALYZER-FTP-Server-Verzeichnis wird geöffnet.
- Kopieren Sie die inkrementelle Firmware-Update-Datei nanl-b500g-re.update in das netANALYZER-FTP-Server-Verzeichnis.

Sobald die Datei kopiert wurde, muss die Firmware-Update-Datei `nanl-b500g-re.update` im FTP-Server-Verzeichnis erscheinen.

![Update-Verzeichnis](image)

Abbildung 23: netANALYZER-FTP-Server-Verzeichnis mit Firmware-Update-Datei

- Falls noch eine `update.log`-Datei aus einem früheren Update-Prozess vorhanden ist, können Sie diese Log-Datei ignorieren.
- Schalten Sie Ihr NANL-B500G-RE-Gerät aus.
- Schalten Sie Ihr NANL-B500G-RE-Gerät wieder ein und warten Sie, bis das Gerät voll funktionsfähig ist.

Wichtig:

Warten Sie, bis die LEDs für ca. 10 Sekunden lang im Zustand „SYS-LED = grün, STA0-LED = rot, STA1-LED = aus“ bleiben. Während des Aktualisierungsvorgangs können die LEDs in verschiedenen Farben blinken.

- Ihr Gerät ist jetzt aktualisiert.

Schritt 3: Prüfen, ob das Update erfolgreich war

- Überprüfen Sie die Versionsinformationen, damit Sie sicher sind, dass der Update-Prozess erfolgreich war.
- Öffnen Sie die netANALYZER Scope-Software und wählen Sie unter **Gerätezuweisung** Ihr Gerät. Alternativ können Sie die Versionsinformation in der Website netANALYZER configuration prüfen (vergleiche Abbildung `Website netANALYZER configuration` im Abschnitt **Uhrzeit für Autonome Betriebsart einstellen** [Seite 35]).
- Die Hauptfunktionen der netANALYZER Scope-Software sind freigeschaltet. Es können Daten aufgenommen werden.
- Die Angaben für Ihr Gerät sollten nun aktuell sein.
7.10 Temperatursteuerung des Ventilators (NANL-B500G-RE)

<table>
<thead>
<tr>
<th>Option</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low temperature threshold</td>
<td>Bei einer CPU-Temperatur größer als 47°C schaltet die Steuerung den Ventilator ein (Default).</td>
</tr>
<tr>
<td>(cool device, but fan is running more often)</td>
<td></td>
</tr>
<tr>
<td>High temperature threshold</td>
<td>Bei einer CPU-Temperatur größer als 60°C schaltet die Steuerung den Ventilator ein. Das Gerät erwärmt sich stärker, bevor der Ventilator eingeschaltet wird und ist leiser.</td>
</tr>
<tr>
<td>(warm device, but silent operation)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 15: Temperaturschwelle für die Ventilator Steuerung

Um die Temperaturschwelle über einen Webbrowser einzustellen, führen Sie die folgenden Schritte aus.

- Die Webseite netANALYZER configuration erscheint.
- Wählen Sie unter Fan behaviour die Option Low temperature threshold für die niedrige Schwelle oder High temperature threshold für die hohe Schwelle aus.
- Klicken Sie Apply changes and restart device an.
- Die Einstellung wird im Analyzer-Gerät NANL-B500G-RE gespeichert.
- Das Gerät wird neu gestartet.

7.11 Elektronik-Altgeräte entsorgen und recyceln

Elektronik-Altgeräte müssen nach dem Nutzungsende ordnungsgemäß entsorgt werden.

Elektronik-Altgeräte
Dieses Produkt darf nicht über den Hausmüll entsorgt werden.
Entsorgen Sie dieses Produkt entsprechend der jeweiligen Vorschriften in Ihrem Land.

Beachten Sie bei der Entsorgung folgendes:
- Beachten Sie die nationalen und örtlichen Vorschriften für die Entsorgung von Elektronik-Altgeräten und Verpackungen.
- Löschen Sie im Elektronik-Altgerät gespeicherte personenbezogene Daten.
- Entsorgen Sie dieses Produkt umweltschonend bei einer örtlichen Sammelstelle für Elektronik-Altgeräte.
- Entsorgen Sie Verpackungen so, dass ein hohes Maß an Recycling möglich ist.

8 Hardware-Eigenschaften

In diesem Kapitel finden Sie Erläuterungen zur Hardware-Eigenschaft des Zeitstempels sowie zur Erfassung von Ethernet-Frames im Transparent-Modus.

8.1 Zeitstempel

Die nachfolgende Abbildung zeigt für den „Ethernet Mode“ bzw. den „Transparent Mode“, wo der Zeitstempel für das zugehörige Datenpaket genommen wird.

Zeitpunkt Zeitstempel im „Transparent Mode“ oder wenn kein SFD gefunden wurde.

Zeitpunkt Zeitstempel im „Ethernet Mode“ wenn SFD gefunden wurde.

Abbildung 24: Ethernet-Frame Zeitpunkt Zeitstempel für „Ethernet Mode“ und „Transparent Mode“

„DV“ = Data Valid, „D0..3“ = Daten, „5 d“ = Kennung des SFD

„SFD“ = Start-of-Frame-Delimiter

„Ethernet Mode“ (Standard-Aufzeichnung):

Im „Ethernet Mode“ wird der Zeitstempel beim Empfang des SFD (Start-of-Frame-Delimiter) genommen.

„Transparent Mode“ (SFD ist gestört):

Im „Transparent Mode“ wird der Zeitstempel immer vorne beim „Data Valid“-Flankenanstieg genommen, d. h. beim eigentlichen Start der Ethernet-Frames. Dies ermöglicht es auch für fehlerhafte Frames einen Referenzpunkt zu finden. Dabei werden Preamble und SFD nicht interpretiert.

Genauigkeit der Zeitstempelung

Zeitstempel auf Port 0 und Port 1 auf dem NANL-B500G-RE-Gerät können einen Offset von bis zu 40 ns besitzen. Nach einer Einschwingzeit von ca. 100 ms ab Empfang des ersten Frames auf einem Port beträgt das Offset an diesem Port max. 8 ns.

8.2 Transparent-Modus (Transparent Mode)

Der **Transparent-Modus** (Transparent Mode) wird bei der Datenaufzeichnung eingesetzt und dient dazu alle zum Ethernet-Telegramm zugehörigen Daten zu erfassen, d. h., alle übertragenen Bits einschließlich aller Frame-Informationen, Präambel und SFD (=Start of Frame Delimiter).

Hinweis:
Die Verwendung des Transparent-Modus (Transparent Mode) ist nur bei 100 Mbit-Verbindungen sinnvoll.

Die nachfolgende Grafik zeigt eine Prinzipdarstellung eines Ethernet-Frames im *Ethernet-Modus* bzw. im *Transparent-Modus*.

Abbildung 25: Prinzipdarstellung eines Ethernet Frames im Ethernet-Modus bzw. im Transparent-Modus

Während die Präambel und SFD (=Start of Frame Delimiter) im Ethernet-Modus nicht aufgezeichnet werden, werden diese Teile des Frames im Transparent-Modus miterfasst.

Abbildung 26: Ethernet-Frame in Wireshark im Ethernet-Modus

Abbildung 27: Ethernet-Frame in Wireshark im Transparent-Modus
9 Fehlersuche

Allgemein

➢ Prüfen Sie, ob die Voraussetzungen für den Betrieb des Analyzer-Gerätes NANL-B500G-RE erfüllt sind:

Weitere Angaben hierzu finden Sie im Abschnitt Systemvoraussetzungen [› Seite 17].

Link wird nicht erkannt

Hinweis:
Bei 10-Mbit/s-Verbindungen kann der PHY bei erhöhter Buslast eventuell den Link nicht korrekt erkennen. Wird der Link nicht aufgebaut (Link DOWN), so muss zur Fehlerbehebung die Geschwindigkeit manuell auf 10 Mbit/s eingestellt werden.

LINK-LED

➢ Überprüfen Sie anhand des Status der LINK-LED ob eine Verbindung zum Ethernet besteht.

Weitere Angaben hierzu finden Sie im Kapitel LEDs [› Seite 68].

Kabel

➢ Prüfen Sie, dass die Pin-Belegung der verwendeten Kabel richtig ist.

Analyzer-Gerät NANL-B500G-RE

➢ Prüfen Sie, ob die Spannungsversorgung für das Gerät an die Netzspannung angeschlossen ist.

Verbindungsstörungen zum Host (NANL-B500G-RE)

Bei der Ethernet-Verbindung vom Analyzer-Gerät NANL-B500G-RE-Gerät zum PC handelt es sich um eine gesicherte Verbindung. Übertragungsfehler auf der Host-Gigabit-Schnittstellenleitung (wie EMV-Störungen oder schlechte Kontakte) verursachen keinen Datenverlust. Zu starke Störungen können jedoch zu einem Verbindungsabbruch führen.

Gerät ist nicht mehr erreichbar (NANL-B500G-RE)

Hinweis:
Bei Problemen aufgrund fehlerhafter Einstellungen der IP-Adresse (z. B. Gerät ist nicht mehr erreichbar), starten Sie Ihr Gerät neu. Halten Sie beim Einschalten Ihres Gerätes die REC-Taste ca. 1 Minute lang gedrückt. Dann wird die Standardeinstellung für die IP-Adresse Ihres Gerätes (DHCP-Server-Betrieb) wiederhergestellt.
Hinweise zur Autonomen Betriebsart bei NANL-B500G-RE (Anschluss an USB-Speichermedium)

- Wenn keine Lizenz für „Autonomen Betriebsart“ vorhanden ist, wird die Datei „NoLicence.txt“ auf dem USB-Speichermedium erstellt, mit dem Inhalt: "No valid netANALYZER license found for autonomous operation." Die STA1-LED blinkt rot, siehe Abschnitt SYS, STA0, STA1, I/O, LINK und RX (NANL-B500G-RE, Frontseite) [† Seite 68].

- Falls mit einem Ausfall der Spannungsversorgung des NANL-B500G-RE während der Aufzeichnung zu Rechnen ist, kann das USB-Speichermedium mit einem ext4-Dateisystem verwendet werden, um einem Datenverlust vorzubeugen. Weitere Angaben siehe Abschnitt Hinweise zur Installation und zum Betrieb [† Seite 20].

- Wenn das Analyzer-Gerät über die UPLINK-Buchse in der interaktiven Betriebsart verwendet wird (vergleiche Abschnitt Interaktive Betriebsart, Anschluss an PC [† Seite 31]), und trotzdem versucht wird, durch Drücken der REC-Taste in die Autonome Betriebsart zu wechseln, wird die Datei "DeviceBusy.txt" auf dem USB-Speichermedium erstellt, mit dem Inhalt: "netANALYZER is in use and could not be opened for autonomous operation."

Firewall und Port-Einstellungen

Der Benutzer muss die Firewall-Einstellungen überprüfen und gegebenenfalls Regeleinstellungen vornehmen:

- TCP: Regel hinzufügen, um TCP-Verbindung auf Port 50111 zu erlauben.
- UDP: Regel hinzufügen, um das Senden auf dem UDP-Port 25384 (UDP-Broadcast und Unicast) zu erlauben.
10 LEDs

10.1 LEDs NANL-B500G-RE

10.1.1 SYS, STA0, STA1, I/O, LINK und RX (NANL-B500G-RE, Frontseite)

Systemstatus

<table>
<thead>
<tr>
<th>LED</th>
<th>Farbe</th>
<th>Zustand</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS</td>
<td>grün</td>
<td>Ein</td>
<td>Betriebssystem läuft.</td>
</tr>
<tr>
<td></td>
<td>gelb</td>
<td>Blinkt zyklisch mit 1 Hz</td>
<td>Gerät zeigt einen Fehler beim Bootvorgang an.</td>
</tr>
<tr>
<td></td>
<td>gelb</td>
<td>Ein</td>
<td>Gerät startet (bootet).</td>
</tr>
<tr>
<td></td>
<td>aus</td>
<td>Aus</td>
<td>Versorgungsspannung für das Gerät fehlt oder Hardware-Defekt</td>
</tr>
</tbody>
</table>

Tabelle 16: Zustände der SYS-LED (NANL-B500G-RE)

<table>
<thead>
<tr>
<th>LED-Status</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinkt zyklisch mit 1 Hz</td>
<td>Die Anzeige ist in Phasen ein- bzw. ausgeschaltet, mit einer Frequenz von 1 Hz: Ein für 500 ms gefolgt von Aus für 500 ms.</td>
</tr>
</tbody>
</table>

Tabelle 17: Definition der Zustände der SYS-LED

Status STA0 und STA1

<table>
<thead>
<tr>
<th>LED</th>
<th>Farbe</th>
<th>Zustand</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA0</td>
<td>grün</td>
<td>Ein</td>
<td>Aufzeichnungsvorgang aktiv, mit bzw. ohne angeschlossenem USB-Speichermedium, Live-Dump-Mode</td>
</tr>
<tr>
<td></td>
<td>grün</td>
<td>Blinkt zyklisch mit 1 Hz</td>
<td>Nur Autonome Betriebsart: Aufzeichnungsvorgang aktiv, Snapshot-Mode</td>
</tr>
<tr>
<td></td>
<td>grün</td>
<td>Blinkt zyklisch mit 1 Hz</td>
<td>Nur Autonome Betriebsart: Aufzeichnungsvorgang aktiv, Snapshot-Mode; Es wurde noch kein Neustart des Netzwerks erkannt.</td>
</tr>
<tr>
<td></td>
<td>grün</td>
<td>Blinkt zyklisch mit 5 Hz</td>
<td>Nur Autonome Betriebsart: Snapshot-Mode verfügbar; Snapshot-Mode: Mindestens ein Snapshot wurde abgespeichert.</td>
</tr>
<tr>
<td></td>
<td>grün</td>
<td>Blinkt zyklisch grün mit 5 Hz (und Blitz in Orange alle 500 ms)</td>
<td>Nur Autonome Betriebsart: Snapshot-Mode verfügbar; Mindestens ein Snapshot wurde abgespeichert; Es wurde noch kein Neustart des Netzwerks erkannt.</td>
</tr>
<tr>
<td></td>
<td>orange</td>
<td>Blinkt zyklisch mit 1 Hz</td>
<td>Nur Autonome Betriebsart: USB-Speichermedium verbunden, Aufzeichnungsvorgang inaktiv, Snapshot-Mode</td>
</tr>
<tr>
<td></td>
<td>orange</td>
<td>Ein</td>
<td>Nur Autonome Betriebsart: USB-Speichermedium verbunden, Aufzeichnungsvorgang inaktiv, Live-Dump-Mode</td>
</tr>
<tr>
<td></td>
<td>rot</td>
<td>Ein</td>
<td>Aufzeichnungsvorgang inaktiv, mit bzw. ohne angeschlossenem USB-Speichermedium oder USB-Speichermedium ist nicht kompatibel oder defekt</td>
</tr>
</tbody>
</table>

© Hilscher 2007-2023
Tabelle 18: Zustände der Status-LEDs STA0 und STA1 (NANL-B500G-RE), Interaktive und Autonome Betriebsart

<table>
<thead>
<tr>
<th>LED</th>
<th>Farbe</th>
<th>Zustand</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA1</td>
<td>grün</td>
<td>Einfach-Blitz</td>
<td>GPIO-Event: Aktivität durch Signale auf den GPIO (externer Eingang/Ausgang)</td>
</tr>
<tr>
<td></td>
<td>orange</td>
<td>Einfach-Blitz</td>
<td>Nur Autonome Betriebsart: Fehlerhafte Ethernet-Frames erkannt.</td>
</tr>
<tr>
<td></td>
<td>orange</td>
<td>Blinkt zyklisch mit 1 Hz</td>
<td>Nur Autonome Betriebsart: Datum/Uhrzeit nicht eingestellt, Überprüfung bei angeschlossenem USB-Speichermedium und wenn das NANL-B500G-RE-Gerät betriebsbereit ist.</td>
</tr>
<tr>
<td></td>
<td>rot</td>
<td>Einfach-Blitz</td>
<td>Nur Autonome Betriebsart: FIFO-Overflow-Change</td>
</tr>
<tr>
<td></td>
<td>rot</td>
<td>Blinkt zyklisch mit 5 Hz</td>
<td>Nur Autonome Betriebsart: Keine Lizenz, Überprüfung bei angeschlossenem USB-Speichermedium</td>
</tr>
<tr>
<td>I/O</td>
<td>rot</td>
<td>Ein</td>
<td>Fehler zwischen PCI-Gerät und Firmware zum PC</td>
</tr>
</tbody>
</table>

Nur Interaktive Betriebsart: Zusätzlich SYS gelb und STA0 rot ein, bedeutet „Fatal Error“: Firmware kann aufgrund eines Hardware-Problems nicht starten.

Nur Autonome Betriebsart: Zusätzlich STA0 orange, blinkt mit 1 Hz, bedeutet „Fatal Error“: a) nsprj-Datei ungültig, Interaktive Betriebsart ist bereits aktiv, b) nicht genügend USB-Speicherkapazität, Snapshot-Mode

Nur Autonome Betriebsart: Zusätzlich STA0 rot ein, bedeutet „Fatal Error“: nicht genügend USB-Speicherkapazität, Live-Dump-Mode

Tabelle 19: Zustände der Status-LEDs STA0 und STA1 (NANL-B500G-RE), nur Autonome Betriebsart

<table>
<thead>
<tr>
<th>LED</th>
<th>Farbe</th>
<th>Zustand</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA0</td>
<td>rot</td>
<td>Einfach-Blitz</td>
<td>Nur Autonome Betriebsart:</td>
</tr>
<tr>
<td>STA1</td>
<td>rot</td>
<td>Einfach-Blitz</td>
<td>LED-Blinkcode nach Drücken der REC-Taste: REC-Taste nicht verwendbar</td>
</tr>
<tr>
<td>I/O</td>
<td>rot</td>
<td>Einfach-Blitz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LED</th>
<th>Farbe</th>
<th>Zustand</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA0</td>
<td>grün</td>
<td>Einfach-Blitz</td>
<td>Nur Autonome Betriebsart:</td>
</tr>
<tr>
<td>STA1</td>
<td>grün</td>
<td>Einfach-Blitz</td>
<td>LED-Blinkcode nach Drücken der REC-Taste: Bestätigung für REC-Taste</td>
</tr>
<tr>
<td>I/O</td>
<td>grün</td>
<td>Einfach-Blitz</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 20: Definition der Zustände der Status-LEDs STA0 und STA1

<table>
<thead>
<tr>
<th>LED-Status</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinkt zyklisch mit 1 Hz</td>
<td>Die Anzeige ist in Phasen ein- bzw. ausgeschaltet, mit einer Frequenz von 1 Hz: Ein für 500 ms gefolgt von Aus für 500 ms.</td>
</tr>
<tr>
<td>Blinkt zyklisch mit 1 Hz (grün/orange)</td>
<td>Die Anzeige ist in Phasen in Grün bzw. Orange einschaltet, im Wechsel mit einer Frequenz von 1 Hz: Grün Ein für 500 ms gefolgt von Orange Ein für 500 ms.</td>
</tr>
<tr>
<td>Blinkt zyklisch mit 5 Hz</td>
<td>Die Anzeige ist in Phasen ein- bzw. ausgeschaltet, mit einer Frequenz von 5 Hz: Ein für 100 ms gefolgt von Aus für 100 ms.</td>
</tr>
<tr>
<td>Blinkt zyklisch grün mit 5 Hz (mit zusätzlichem Blitz in Orange)</td>
<td>Die Anzeige ist in Phasen ein- bzw. ausgeschaltet, mit einer Frequenz von 5 Hz: Grün Ein für 100 ms gefolgt von Aus für 100 ms, zusätzlich erscheint alle 500 ms ein Blitz in Orange</td>
</tr>
<tr>
<td>Einfach-Blitz</td>
<td>Die Anzeige zeigt einen kurzen Blitz gefolgt von einer Aus-Phase.</td>
</tr>
<tr>
<td></td>
<td>Die Intervallzeit für den Blitz bei Auslösungen eines GPIO-Events beträgt 100 ms.</td>
</tr>
</tbody>
</table>
I/O-Status

Die I/O-Status-LED zeigt den Konfigurationszustand der GPIOs.

<table>
<thead>
<tr>
<th>LED</th>
<th>Farbe</th>
<th>Zustand</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O</td>
<td>grün</td>
<td>Ein</td>
<td>Der +3,3V-Eingang ist aktiviert. Extern angeschlossene Hardware wird nicht beschädigt, aber stellen Sie sicher, dass der Spannungspegel ausreicht, um eine korrekte Signalerfassung zu gewährleisten.</td>
</tr>
<tr>
<td></td>
<td>rot</td>
<td>Ein</td>
<td>Der +24V-Ausgang ist aktiviert. Hinweis: Extern angeschlossene Hardware könnte beschädigt werden, da Spannung am Gerät anliegt.</td>
</tr>
<tr>
<td></td>
<td>orange</td>
<td>Ein</td>
<td>Der +3,3V-Ausgang ist aktiviert. Hinweis: Extern angeschlossene Hardware könnte beschädigt werden, da Spannung am Gerät anliegt.</td>
</tr>
<tr>
<td></td>
<td>aus</td>
<td>Aus</td>
<td>Der +24 V-Eingang ist aktiviert. Hinweis: Extern angeschlossene Hardware wird nicht beschädigt, aber stellen Sie sicher, dass der Spannungspegel ausreicht, um eine korrekte Signalerfassung zu gewährleisten.</td>
</tr>
</tbody>
</table>

Tabelle 21: Zustände der I/O-Status-LED (NANL-B500G-RE)

Ethernet-Status (RJ45-Ethernet-Buchsen Ch0 und Ch1, TAP A und TAP B)

<table>
<thead>
<tr>
<th>LED</th>
<th>Farbe</th>
<th>Zustand</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK /</td>
<td>grün</td>
<td>Ein</td>
<td>Es besteht eine Verbindung zum Ethernet</td>
</tr>
<tr>
<td>RJ45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch0 bis</td>
<td></td>
<td></td>
<td>Das Gerät hat keine Verbindung zum Ethernet</td>
</tr>
<tr>
<td>Ch3</td>
<td>aus</td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td>RX /</td>
<td>gelb</td>
<td>Blinkt zyklisch mit 2,5 Hz / Ein</td>
<td>Das Gerät empfängt Ethernet-Frames</td>
</tr>
<tr>
<td>RJ45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch0 bis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 22: Zustände der Ethernet-Status-LEDs (NANL-B500G-RE, RJ45-Ethernet-Buchsen Ch0 und Ch1, TAP A und TAP B)

LED-Status

<table>
<thead>
<tr>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinkt zyklisch mit 2,5 Hz</td>
</tr>
</tbody>
</table>

Tabelle 23: Definition der Zustände der Ethernet-Status-LEDs
10.1.2 LINK-ACT und LINK-1000/LINK100 (NANL-B500G-RE, Rückseite)

Ethernet-Status (Gigabit-Ethernet-RJ45-Buchse)

An den Ethernet-Status-LEDs an der Gigabit-Ethernet-RJ45-Buchse zum PC (1 Port mit 1 Gb/s) auf der Rückseite des Analyzer-Gerätes NANL-B500G-RE können Sie ablesen, ob die aufgezeichneten Daten ohne Verluste an den PC übertragen werden.

Wichtig:
Beide Ethernet-Status-LEDs (NANL-B500G-RE, Gigabit-Ethernet-RJ45-Buchse) müssen grün leuchten! Wenn die rechte LED orange leuchtet ist die Übertragungsrate zum PC kleiner 1 GBit/s, es kann zu Bandbreitenengpässen kommen.

<table>
<thead>
<tr>
<th>LED links</th>
<th>Farbe</th>
<th>Zustand</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK-ACT / RJ45 Ch0</td>
<td>grün</td>
<td>Ein</td>
<td>Vom NANL-B500G-RE-Gerät zum PC besteht eine Ethernet-Verbindung.</td>
</tr>
<tr>
<td>LINK-ACT / RJ45 Ch0</td>
<td>grün Blinkt (12 Hz)</td>
<td>Vom NANL-B500G-RE-Gerät werden Ethernet-Daten zum PC übertragen.</td>
<td></td>
</tr>
<tr>
<td>LINK-1000 / RJ45 Ch0</td>
<td>aus</td>
<td>Aus</td>
<td>Es besteht keine Ethernet-Verbindung zwischen dem NANL-B500G-RE-Gerät und dem PC.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LED rechts</th>
<th>Farbe</th>
<th>Zustand</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK-1000 / RJ45 Ch0</td>
<td>grün</td>
<td>Ein</td>
<td>Die Ethernet-Daten des NANL-B500G-RE-Gerätes werden mit einer Übertragungsrate von1000 MBit/s (1 GB/s) an den PC übertragen. Hinweis: Nur bei einer Datenübertragungsrate von 1 GB/s können die aufgezeichneten Daten ohne Verluste an den PC übertragen werden.</td>
</tr>
<tr>
<td>LINK-1000 / RJ45 Ch0</td>
<td>orange</td>
<td>Ein</td>
<td>Die Ethernet-Daten des NANL-B500G-RE-Gerätes werden mit einer Übertragungsrate von100 MBit/s an den PC übertragen. Hinweis: Wenn die rechte LED orange leuchtet während das Analyzer-Gerät NANL-B500G-RE großer Datenmengen aufzeichnet, kommt es im Gerät zum Pufferüberlauf. Die Daten werden nicht mehr an den PC übertragen und die Datenaufzeichnung wird gestoppt.</td>
</tr>
<tr>
<td>LINK-1000 / LINK-100 / J45 Ch0</td>
<td>aus</td>
<td>Aus</td>
<td>Die Ethernet-Daten des NANL-B500G-RE-Gerätes werden nicht an den PC übertragen.</td>
</tr>
</tbody>
</table>

Tabelle 24: Zustände der Ethernet-Status-LEDs (NANL-B500G-RE, Gigabit-Ethernet-RJ45-Buchse)

<table>
<thead>
<tr>
<th>LED-Status</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinkt mit 12 Hz</td>
<td>Die Anzeige ist in Phasen ein- bzw. ausgeschaltet, mit einer Frequenz von 12 Hz: Ein für ca. 42 ms gefolgt von Aus für ca. 42 ms.</td>
</tr>
</tbody>
</table>

Tabelle 25: Definition der Zustände der Ethernet-Status-LEDs
11 Anschlüsse und Schnittstellen

11.1 Spannungsversorgung NANL-B500G-RE

Anschluss 24V-Spannungsversorgung

Combicon: 0V/+24V/FE:

Spannungsversorgung 24V DC, ±6V,

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>+24V</td>
<td>18-30 V DC</td>
</tr>
<tr>
<td>3</td>
<td>FE</td>
<td>Functional earth</td>
</tr>
</tbody>
</table>

Maximal zulässige Kabellänge: 3 m

Alternativ Anschlussbuchse +24 V (nur alternative Nutzung zulässig!):

Spannungsversorgung 24V DC, ±6V; max. 3 A,

Außen = GND, Stift = +24V; für Hohlstecker:(ø 5,5 / ø 2,1) L 12 mm;

Maximal zulässige Kabellänge: 3 m

Die Anschlussbuchse +24 V ist für das Netzteil TR30RA240 geeignet.

Technische Daten des Netzteils TR30RA240 (mit Hohlstecker)

Eingang: 90-264 VAC ~ 0,4 … 0,8 A (47-63 Hz)
Ausgang: 24 V / 1,25 A
Kabellänge: 1,8 m
Betriebstemperaturbereich: 0 … 60 °C
(ab 40°C sinkt der Strom bei steigender Temperatur)
Artikelnummer: TRG30RA240V-11E03-BE-BK
Hersteller: Cinon Electronics Ltd.
11.2 Ethernet-Schnittstelle

Für die Ethernet-Schnittstelle verwendet man RJ45-Stecker und paarig verdrilltes Kabel der Kategorie 5 (CAT5) oder höher, welches aus 4 paarweise verdrillten Adern besteht und eine maximale Übertragungsrate von 100 MBit/s (CAT5) hat.

11.2.1 Ethernet-Pin-Belegung an der RJ45-Buchse

Abbildung 28: Ethernet-Pin-Belegung an der RJ45-Buchse

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX+</td>
<td>Sendedaten +</td>
</tr>
<tr>
<td>2</td>
<td>TX–</td>
<td>Sendedaten –</td>
</tr>
<tr>
<td>3</td>
<td>RX+</td>
<td>Empfangsdaten +</td>
</tr>
<tr>
<td>4</td>
<td>Term 1</td>
<td>Gebrückt und zu PE über RC-Glied terminiert*</td>
</tr>
<tr>
<td>5</td>
<td>Term 1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RX–</td>
<td>Empfangsdaten –</td>
</tr>
<tr>
<td>7</td>
<td>Term 2</td>
<td>Gebrückt und zu PE über RC-Glied terminiert*</td>
</tr>
<tr>
<td>8</td>
<td>Term 2</td>
<td></td>
</tr>
</tbody>
</table>

Hinweis:
Der RJ45-Stecker darf nur für LAN verwendet werden, nicht für Telekommunikationsanschlüsse.

11.2.2 Daten zum Ethernet-Anschluss

<table>
<thead>
<tr>
<th>Medium</th>
<th>2 x 2 paarig verdrilltes Kupferkabel, CAT5 (100 MBit/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leitungslänge</td>
<td>max. 100 m</td>
</tr>
<tr>
<td>Empfangsrate</td>
<td>10 MBit/s / 100 MBit/s</td>
</tr>
</tbody>
</table>

Tabelle 27: Daten zum Ethernet-Anschluss
11.3 Externe EA-Schnittstelle

Die externe EA-Schnittstelle hat 4 digitale Eingänge oder Ausgänge, die GPIOs 0 bis 3. Jedes GPIO kann als Eingang oder als Ausgang konfiguriert werden.

ACHTUNG Geräteschaden

- Für den Betrieb des NANL-B500G-RE-Gerätes an den I/O-Signal-Pins der externen EA-Schnittstelle insgesamt maximal 1 mA (bei 3,3V) bzw. 600 mA (bei 24V) Strom entnehmen. Andernfalls können der netX-Chip sowie weitere Bauelemente beschädigt werden.

Anschlussbuchse externe EA-Schnittstelle mit den GPIOs 0 bis 3:

<table>
<thead>
<tr>
<th>GPIO</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Abbildung 29: Anschlussbuchse externe EA-Schnittstelle

Tabelle 28: Pin-Belegung externe EA-Schnittstelle

11.3.1 Anschlusskabel für externe EA-Schnittstelle

Für den Zugriff auf die digitalen Signale der GPIOs 0 bis 3 der externen EA-Schnittstelle benötigen Sie ein Kabel mit den nachfolgenden Eigenschaften.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Anforderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Leiterquerschnitt</td>
<td>0,2 mm²</td>
</tr>
<tr>
<td>Max. Leiterquerschnitt</td>
<td>1 mm²</td>
</tr>
<tr>
<td>Max. Leitungslänge</td>
<td>3 m</td>
</tr>
<tr>
<td>Abschirmung</td>
<td>Geschirmtes Kabel</td>
</tr>
</tbody>
</table>

Tabelle 29: Anforderungen für Anschlusskabel externe EA-Schnittstelle
11.3.2 Charakteristik des Eingangssignals an der E/A-Schnittstelle

Zur Kennzeichnung des Verhaltens der Eingangsspannung an der externen E/A-Schnittstelle (GPIOs 0-3) am Analyzer-Gerät NANL-B500G-RE dienen die nachfolgend aufgeführten Spannungsschwellen für die Low- und High-Pegel bei 3,3 V und bei 24 V.

Wird die externe E/A-Schnittstelle auf Eingang (Input) und 3,3 V bzw. 24 V Logik eingestellt, gelten die folgenden logischen Pegel:

<table>
<thead>
<tr>
<th>Eingang (Input)</th>
<th>NANL-B500G-RE, Wert bei T = -20 … + 55°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Pegel</td>
<td></td>
</tr>
<tr>
<td>$V_{\text{input}} = 3,3 \text{ V}$</td>
<td>0,9 V</td>
</tr>
<tr>
<td>$V_{\text{input}} = 24 \text{ V}$</td>
<td>6,5 V</td>
</tr>
<tr>
<td>High-Pegel</td>
<td></td>
</tr>
<tr>
<td>$V_{\text{input}} = 3,3 \text{ V}$</td>
<td>2,3 V</td>
</tr>
<tr>
<td>$V_{\text{input}} = 24 \text{ V}$</td>
<td>16,7 V</td>
</tr>
</tbody>
</table>

Tabelle 30: Spannungsschwellen für Low- und High-Pegel für NANL-B500G-RE

- Unterhalb der genannten Spannungsschwellen Low-Pegel wird der Eingang als garantiert „Low“, also logisch „Null“ interpretiert.
- Oberhalb der genannten Spannungsschwellen High-Pegel wird der Eingang als garantiert „High“, also logisch „Eins“ interpretiert.

Wichtig:
Der Spannungsbereich zwischen der unteren Spannungsschwelle (Low-Pegel) und der oberen Spannungsschwelle (High-Pegel) ist undefiniert und soll so schnell wie möglich durchfahren werden.

Die Signalanstiegszeit muss möglichst gering sein, um die Messgenauigkeit von 10 ns zu gewährleisten, d. h. die Flankensteilheit des Eingangssignals muss zur erforderlichen Messgenauigkeit passen.

Abbildung 30: Verhalten der Eingangsspannung, Beispiele Flankenanstieg: links – steil (gewünscht), rechts – flach (nicht gewünscht)

Abbildung 31: Ersatzschaltbild NANL-B500G-RE
12 Technische Daten

12.1 Analyzer-Gerät NANL-B500G-RE

<table>
<thead>
<tr>
<th>NANL-B500G-RE</th>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artikel</td>
<td>Name</td>
<td>NANL-B500G-RE</td>
</tr>
<tr>
<td></td>
<td>Artikelnummer</td>
<td>7313.100</td>
</tr>
<tr>
<td>Beschreibung</td>
<td>netANALYZER portables Gerät mit Gigabit-Ethernet-PC-Schnittstelle für Echtzeit-Ethernet und alle 10/100BASE-T-Ethernet-Netzwerke (Stand-Alone-Gerät)</td>
<td></td>
</tr>
<tr>
<td>Funktion</td>
<td>Passiver Ethernet-Analyzer für RT-Ethernet-Systeme; analysiert den Datenverkehr in einer Kommunikationsstrecke und protokolliert die ankommenden Ethernet-Frames. Zusätzlich können Ereignisse von vier digitalen Eingängen erfasst werden. Interaktive Betriebsart, Autonome Betriebsart (siehe Abschnitt Autonome Betriebsart, Randbedingungen und Voraussetzungen [Seite 32]).</td>
<td></td>
</tr>
<tr>
<td>Kommunikationscontroller</td>
<td>Typ</td>
<td>netX 500-Prozessor mit ARM 926 CPU</td>
</tr>
<tr>
<td></td>
<td>Größe des Dual-Port-Memory</td>
<td>64 KByte</td>
</tr>
<tr>
<td></td>
<td>PC-Schnittstelle</td>
<td>Gigabit-Ethernet-RJ45-Buchse zum PC</td>
</tr>
<tr>
<td></td>
<td>Erforderlicher Anschluss</td>
<td>„UPLINK 1Gb/s“, Ethernet-RJ45-Buchse (1 Port)</td>
</tr>
<tr>
<td>Systemschnittstelle</td>
<td>Ethernet-Kommunikation</td>
<td>Empfang von Ethernet-Frames</td>
</tr>
<tr>
<td></td>
<td>Ethernet-Frame-Typen</td>
<td>Ethernet II</td>
</tr>
<tr>
<td>Ethernet-Schnittstelle</td>
<td>Empfangsrate</td>
<td>10 MBit/s, 100 MBit/s</td>
</tr>
<tr>
<td>(auf der Frontseite des Gerätes)</td>
<td>Schnittstellentyp</td>
<td>100 BASE-TX, 10 BASE-T</td>
</tr>
<tr>
<td></td>
<td>Galvanische Trennung</td>
<td>potentialfrei</td>
</tr>
<tr>
<td></td>
<td>Isolationsspannung</td>
<td>1000 VDC (getestet für 70 Sekunden)</td>
</tr>
<tr>
<td></td>
<td>Halb-Duplex/Voll-Duplex</td>
<td>unterstützt</td>
</tr>
<tr>
<td></td>
<td>Steckverbinder</td>
<td>4 * RJ45-Buchse, siehe auch Abschnitt Ethernet-Schnittstelle [Seite 73].</td>
</tr>
<tr>
<td></td>
<td>Ethernet-Kabel</td>
<td>2 x 2 paarig verdrilltes Kupferkabel, CAT5 (100 MBit/s); Leitungslänge: max. 100 m</td>
</tr>
<tr>
<td></td>
<td>Kanäle / Ports</td>
<td>2 Kommunikationskanäle mit integrierten TAPs (TAP B, TAP A), bzw. mit je zwei Ports zur Aufzeichnung beider Datenrichtungen (zusammen 4 Ports: Port 0 bis Port 3)</td>
</tr>
<tr>
<td></td>
<td>Filter</td>
<td>2 Filter auf den ersten 512 Bytes des Ethernet-Frames (Source- und Destination-MAC-Adresse, Ether-Type und 498 Folge-Bytes)</td>
</tr>
<tr>
<td></td>
<td>Zeitstempel Auflösung</td>
<td>10 ns</td>
</tr>
<tr>
<td></td>
<td>Verzögerungszeit</td>
<td>Delay TAP < 1 ns Signalverzögerung</td>
</tr>
<tr>
<td></td>
<td>Netzwerkschnittstelle</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Wert</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Diagnoseschnittstelle</td>
<td>USB-Schnittstelle für Autonome Betriebsart</td>
<td>USB-Buchse (Typ A, 4-polig) Die USB-Buchse liefert maximal 500 mA, ausreichend für den Anschluss eines USB-Sticks. Bei Anschluss einer USB-Festplatte ist eine eigene Spannungsversorgung erforderlich.</td>
</tr>
<tr>
<td>USB-Speichermedium für Autonome Betriebsart</td>
<td>USB-Stick oder USB-Festplatte, USB 2.0, FAT32-formatiert, mindestens 100 Mbyte Speicherkapazität</td>
<td></td>
</tr>
<tr>
<td>Externe EA-Schnittstelle</td>
<td>Externe Schnittstelle Eingangs- / Ausgangssignale (Anschlussbuchse):</td>
<td>4x digitale Eingänge/Ausgänge (GPIO s 0 bis 3), 3.3V / 1 mA bzw. 24V / 600 mA (siehe Abschnitt Maximal zulässige Stromentnahme (externe EA-Schnittstelle) [@ Seite 18]). Mindestabstand für GPIO-Ereignisse > 150 µs</td>
</tr>
<tr>
<td>Anzeigen</td>
<td>LED-Anzeige (auf der Frontseite des Gerätes):</td>
<td>SYS Systemstatus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STA0 Aufzeichnung aktiv / inaktiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STA1 Eventsignal detektiert</td>
</tr>
<tr>
<td></td>
<td>I/O zeigt GPIO-Status (3,3V Eingang, 24V Eingang, 3,3V Ausgang, 24V Ausgang)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LED grün Ethernet-RX-Status (je an RJ45Ch0 und RJ45Ch1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LED gelb Ethernet-Link-Status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LED grün Ethernet-Link-Status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LED grün Ethernet-LINK-1000 LINK-100-Status (an Gigabit-Ethernet-RJ45-Buchse)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LED grün Ethernet-LINK-1000 LINK-100-Status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spannungsversorgung versorgung nominal</td>
<td>24V DC / 700 mA / 16,8 W (siehe Abschnitte Spannungsversorgung und Host-Schnittstelle und Spannungsversorgung NANL-B500G-RE [@ Seite 72]).</td>
</tr>
<tr>
<td></td>
<td>Bereich der Betriebsspannung</td>
<td>18V … 30V DC</td>
</tr>
<tr>
<td></td>
<td>Anschluss 24V- Spannungsversorgung</td>
<td>Combicon: 0V/+24V/FE: Spannungsversorgung 24V DC, ±6V, Pin 1 = GND; Pin 2 = +24V; Pin 3 = FE; Maximal zulässige Kabellänge: 3 m Alternativ Anschlussbuchse +24 V: Spannungsversorgung 24V DC, ±6V max. 3 A, Außen = GND, Stift = +24V; für Hohlstecker: (φ 5,5 / φ 2,1) L 12 mm; Maximal zulässige Kabellänge: 3 m</td>
</tr>
<tr>
<td></td>
<td>Netzschalter</td>
<td>ON / OFF</td>
</tr>
<tr>
<td>Parameter</td>
<td>Wert</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Betriebstemperaturbereich*</td>
<td>-20 °C ... +55 °C</td>
<td></td>
</tr>
<tr>
<td>*Umluftgeschwindigkeit (Air flow), bei der Messung</td>
<td>0,5m/s</td>
<td></td>
</tr>
<tr>
<td>Lagertemperaturbereich</td>
<td>-10 °C ... +70 °C</td>
<td></td>
</tr>
<tr>
<td>Luftfeuchte</td>
<td>10 ... 95% rel. Luftfeuchtigkeit, keine Betauung zulässig</td>
<td></td>
</tr>
<tr>
<td>Umgebung</td>
<td>Das Gerät darf nur in einer Umgebung des Verschmutzungsgrades 2 eingesetzt werden.</td>
<td></td>
</tr>
<tr>
<td>Höhe</td>
<td>0 m ... 2000 m</td>
<td></td>
</tr>
<tr>
<td>Abmessung (L x B x T)</td>
<td>115 x 62 x 173 mm</td>
<td></td>
</tr>
<tr>
<td>RoHS</td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>Montage/Installation</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CE-Zeichen</td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>UKCA-Zeichen</td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>Emission</td>
<td>EN IEC 61000-6-4:2019 / BS EN IEC 61000-6-4:2019</td>
<td></td>
</tr>
<tr>
<td>Störfestigkeit</td>
<td>EN IEC 61000-6-2:2019 / BS EN IEC 61000-6-2:2019</td>
<td></td>
</tr>
<tr>
<td>Dokumentation zum Nachweis der Beschränkung gefährlicher Stoffe</td>
<td>EN 50581:2012</td>
<td></td>
</tr>
<tr>
<td>Analyzer-Software*</td>
<td>netANALYZER Scope-Software* (mitgeliefert; Vollversion nur mit Lizenz)</td>
<td></td>
</tr>
<tr>
<td>*Datenformat</td>
<td>offenes WinPcap Datenformat</td>
<td></td>
</tr>
<tr>
<td>Netzwerkmonitoring-Programm</td>
<td>zur Anzeige der aufgezeichneten Analysedaten der Ethernet-Frames (unterstützt das WinPcap-Format)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 31: Technische Daten Analyzer-Gerät NANL-B500G-RE
13 Anhang

13.1 Quellennachweise Sicherheit

13.2 Konventionen in diesem Dokument

Handlungsanweisungen

1. Handlungsziel
2. Handlungsziel
 - Handlungsanweisung

Ergebnisse

- Zwischenergebnis
- Endergebnis

Piktogramme

<table>
<thead>
<tr>
<th>Piktogramm</th>
<th>Hinweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄</td>
<td>Allgemeiner Hinweis</td>
</tr>
<tr>
<td>⚠️</td>
<td>Wichtiger Hinweis, der befolgt werden muss, um Fehlfunktionen auszuschließen</td>
</tr>
<tr>
<td>📚</td>
<td>Hinweis auf weitere Informationen</td>
</tr>
</tbody>
</table>

Tabelle 32: Piktogramme

Signalwörter

<table>
<thead>
<tr>
<th>Signalwort</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEFAHR</td>
<td>kennzeichnet eine Gefahr mit hohem Risiko, die zu Tod oder schwerer Verletzung führt, wenn sie nicht vermieden wird.</td>
</tr>
<tr>
<td>WARNUNG</td>
<td>kennzeichnet eine Gefahr mit mittlerem Risiko, die zu Tod oder schwerer Verletzung führen kann, wenn sie nicht vermieden wird.</td>
</tr>
<tr>
<td>VORSICHT</td>
<td>kennzeichnet eine Gefahr mit einem geringen Risiko, die zu leichter oder mittlerer Verletzung führen kann, wenn sie nicht vermieden wird.</td>
</tr>
<tr>
<td>ACHTUNG</td>
<td>Hinweis, der befolgt werden muss, damit kein Sachschaden eintritt.</td>
</tr>
</tbody>
</table>

Tabelle 33: Signalwörter
13.3 Rechtliche Hinweise

Copyright

© Hilscher Gesellschaft für Systemautomation mbH
Alle Rechte vorbehalten.

Wichtige Hinweise

Wir behalten uns das Recht vor, unsere Produkte und deren Spezifikation, sowie zugehörige Dokumentation in Form eines Benutzerhandbuchs, Bedienerhandbuchs sowie alle weiteren Dokumenttypen und Begleittexte jederzeit und ohne Vorankündigung zu ändern, ohne zur Anzeige der Änderung verpflichtet zu sein. Änderungen werden in zukünftigen Manuals berücksichtigt und stellen keine Verpflichtung dar; insbesondere besteht kein Anspruch auf Überarbeitung geliefelter Dokumente. Es gilt jeweils das Manual, das mit dem Produkt ausgeliefert wird.

Die Hilscher Gesellschaft für Systemautomation mbH haftet unter keinen Umständen für direkte, indirekte, Neben- oder Folgeschäden oder Einkommensverluste, die aus der Verwendung der hier enthaltenen Informationen entstehen.
Haftungsausschluss

Insbesondere wird hiermit ausdrücklich vereinbart, dass jegliche Nutzung bzw. Verwendung von der Hard- und/oder Software im Zusammenhang

- der Luft- und Raumfahrt betreffend der Flugsteuerung,
- Kernspaltungsprozessen in Kernkraftwerken,
- medizinischen Geräten die zur Lebenserhaltung eingesetzt werden
- und der Personenbeförderung betreffend der Fahrzeugsteuerung

ausgeschlossen ist. Es ist strikt untersagt, die Hard- und/oder Software in folgenden Bereichen zu verwenden:

- für militärische Zwecke oder in Waffensystemen;
- zum Entwurf, zur Konstruktion, Wartung oder zum Betrieb von Nuklearanlagen;
- in Flugsicherungssystemen, Flugverkehrs- oder Flugkommunikationssystemen;
- in Lebenserhaltungssystemen;
- in Systemen, in denen Fehlfunktionen der Hard- und/oder Software körperliche Schäden oder Verletzungen mit Todesfolge nach sich ziehen können.

Gewährleistung

Die Gewährleistungspflicht für Geräte (Hardware) unserer Fertigung beträgt 36 Monate, gerechnet vom Tage der Lieferung ab Werk. Vorstehende Bestimmungen gelten nicht, soweit das Gesetz gemäß § 438 Abs. 1 Nr. 2 BGB, § 479 Abs.1 BGB und § 634a Abs. 1 BGB zwingend längere Fristen vorschreibt. Sollte trotz aller aufgewendeter Sorgfalt die gelieferte Ware einen Mangel aufweisen, der bereits zum Zeitpunkt des Gefahrübergangs vorlag, werden wir die Ware vorbehaltlich fristgerechter Mängelrüge, nach unserer Wahl nachbessern oder Ersatzware liefern.

Die Gewährleistungspflicht entfällt, wenn die Mängelrügen nicht unverzüglich geltend gemacht werden, wenn der Käufer oder Dritte Eingriffe an den Erzeugnissen vorgenommen haben, wenn der Mangel durch natürlichen Verschleiß, infolge ungünstiger Betriebsumstände oder infolge von Verstößen gegen unsere Betriebsvorschriften oder gegen die Regeln der Elektrotechnik eingetreten ist oder wenn unserer Aufforderung auf Rücksendung des schadhaften Gegenstandes nicht umgehend nachgekommen wird.

Kosten für Support, Wartung, Anpassung und Produktpflege

Weitere Garantien

Vertraulichkeit

Die Parteien erklären sich dahin gehend einverstanden, dass die Informationen, die sie von der jeweils anderen Partei erhalten haben, in dem geistigen Eigentum dieser Partei stehen und verbleiben, soweit dies nicht vertraglich anderweitig geregelt ist.

Der Kunde darf diese vertraulichen Informationen nicht zu seinem eigenen Vorteil oder eigenen Zwecken, bzw. zum Vorteil oder Zwecken eines Dritten verwenden oder geschäftlich nutzen und darf diese vertraulichen Informationen nur insoweit verwenden, wie in dieser Vereinbarung vorgesehen bzw. anderweitig insoweit, wie er hierzu ausdrücklich von der offenen Partei schriftlich bevollmächtigt wurde. Der Kunde ist berechtigt, seinen unmittelbaren Rechts- und Finanzberatern die Vertragsbedingungen dieser Vereinbarung unter Vertraulichkeitsverpflichtung zu offenbaren, wie dies für den normalen Geschäftsbetrieb des Kunden erforderlich ist.

Exportbestimmungen

13.4 Warenmarken

Windows® 7, Windows® 8 und Windows® 10 sind registrierte Warenmarken der Microsoft Corporation.

Wireshark® und das "fin"-Logo sind registrierte Warenmarken von Gerald Combs.

Adobe Acrobat® ist eine registrierte Warenmarke der Adobe Systems, Inc. in den USA und weiteren Staaten.

PCI™ ist eine Warenmarke der Peripheral Component Interconnect Special Interest Group (PCI-SIG).

Alle anderen erwähnten Marken sind Eigentum ihrer jeweiligen rechtmäßigen Inhaber.
Abbildungsverzeichnis

Abbildung 1: Typische Anwendung (Anwendungsfall 2) – Die Kommunikation zwischen einem Gerät und dessen Verbindungspartnern in einem Netzwerk soll analysiert werden ... 13
Abbildung 2: Beispieldarstellung physikalischer TAP .. 13
Abbildung 3: Typische Analyzer-Anwendung mit Aufzeichnung des Ethernet-Datentransfers und der IO-Ereignisse ... 14
Abbildung 4: Interaktive und Autonome Betriebsart ... 15
Abbildung 5: Frontseite Analyzer-Gerät NANL-B500G-RE .. 16
Abbildung 6: Rückseite Analyzer-Gerät NANL-B500G-RE .. 16
Abbildung 7: Firewall-Einstellungen ... 28
Abbildung 8: netANALYZER-Konfigurationsseite .. 30
Abbildung 9: Webseite netANALYZER configuration .. 36
Abbildung 10: Schematische Darstellung der Reservekapazität des USB-Speichermediums bei einer maximalen Anzahl Snapshots = „4“ ... 37
Abbildung 11: Webseite netANALYZER configuration ... 40
Abbildung 12: Pufferüberlauf ... 46
Abbildung 13: Anwendungsfall 1 .. 49
Abbildung 14: Anwendungsfall 2 .. 50
Abbildung 15: Anwendungsfall 3 .. 51
Abbildung 16: Anwendungsfall 4 – Messung der Laufzeiten im Gerät .. 53
Abbildung 17: Beispiel - Auto-Crossover und Port-Vertauschen .. 55
Abbildung 18: Aufbau eines TAP, rechts Ports von Gerät 1 und Gerät 2 vertauscht 55
Abbildung 19: Ethernet Device Configuration - NANL-B500G-RE gefunden (Beispiel) 56
Abbildung 20: Ethernet Device Configuration - NANL-B500G-RE gefunden (Beispiel) 58
Abbildung 21: Anmeldemaske für FTP-Server ... 59
Abbildung 22: Die Firmware-Update-Datei in das netANALYZER-FTP-Server-Verzeichnis kopieren ... 59
Abbildung 23: netANALYZER-FTP-Server-Verzeichnis mit Firmware-Update-Datei 60
Abbildung 24: Ethernet-Frame Zeitpunkt Zeitstempel für „Ethernet Mode“ und „Transparent Mode“ ... 64
Abbildung 25: Prinzipdarstellung eines Ethernet Frames im Ethernet-Modus bzw. im Transparent-Modus .. 65
Abbildung 26: Ethernet-Frame in Wireshark im Ethernet-Modus.. 65
Abbildung 27: Ethernet-Frame in Wireshark im Transparent-Modus ... 65
Abbildung 28: Ethernet-Pin-Belegung an der RJ45-Buchse .. 73
Abbildung 29: Anschlussbuchse externe EA-Schnittstelle ... 74
Abbildung 30: Verhalten der Eingangsspannung, Beispiele Flankenanstieg: links – steil (gewünscht), rechts – flach (nicht gewünscht) ... 75
Abbildung 31: Ersatzschaltbild NANL-B500G-RE ... 75
<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Beschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Änderungsübersicht</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>netANALYZER-Hardware</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Installierte Dateien für netANALYZER (Firmware, Treiber, Toolkit)</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Erforderliche Lizenzen für „Autonomen Betriebsart“ und „Snapshot-Mode“</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>netANALYZER-Gerät</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>TAP Delay</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Erklärungen zur Frontseite und Rückseite NANL-B500G-RE</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Anforderungen Spannungsversorgung und Host-Schnittstelle NANL-B500G-RE</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>Maximal zulässige Stromentnahme (externe EA-Schnittstelle NANL-B500G-RE)</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>Hinweise zur Installation und zum Betrieb</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>Übersicht Installation</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>Übersicht Aktualisierung der Installation</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>Abhilfe wenn Firewall die Kommunikation blockiert</td>
<td>28</td>
</tr>
<tr>
<td>14</td>
<td>netANALYZER-Konfigurationssseite</td>
<td>29</td>
</tr>
<tr>
<td>15</td>
<td>Temperaturschwelle für die Ventilator Steuerung</td>
<td>61</td>
</tr>
<tr>
<td>16</td>
<td>Zustände der SYS-LED (NANL-B500G-RE)</td>
<td>68</td>
</tr>
<tr>
<td>17</td>
<td>Definition der Zustände der SYS-LED</td>
<td>68</td>
</tr>
<tr>
<td>18</td>
<td>Zustände der Status-LEDs STA0 und STA1 (NANL-B500G-RE), Interaktive und</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Autonome Betriebsart</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Zustände der Status-LEDs STA0 und STA1 (NANL-B500G-RE), nur Autonome</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Betriebsart</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Definition der Zustände der Status-LEDs STA0 und STA1</td>
<td>69</td>
</tr>
<tr>
<td>21</td>
<td>Zustände der I/O-Status-LED (NANL-B500G-RE)</td>
<td>70</td>
</tr>
<tr>
<td>22</td>
<td>Zustände der Ethernet-Status-LEDs (NANL-B500G-RE, RJ45-Ethernet-Buchsen Ch0</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>und Ch1, TAP A und TAP B)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Definition der Zustände der Ethernet-Status-LEDs</td>
<td>70</td>
</tr>
<tr>
<td>24</td>
<td>Zustände der Ethernet-Status-LEDs (NANL-B500G-RE, Gigabit-Ethernet-RJ45-</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Buchse)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Definition der Zustände der Ethernet-Status-LEDs</td>
<td>71</td>
</tr>
<tr>
<td>26</td>
<td>Ethernet-Pin-Belegung an der RJ45-Buchse</td>
<td>73</td>
</tr>
<tr>
<td>27</td>
<td>Daten zum Ethernet-Anschluss</td>
<td>73</td>
</tr>
<tr>
<td>28</td>
<td>Pin-Belegung externe EA-Schnittstelle</td>
<td>74</td>
</tr>
<tr>
<td>29</td>
<td>Anforderungen für Anschlusskabel externe EA-Schnittstelle</td>
<td>74</td>
</tr>
<tr>
<td>30</td>
<td>Spannungsschwellen für Low- und High-Pegel für NANL-B500G-RE</td>
<td>75</td>
</tr>
<tr>
<td>31</td>
<td>Technische Daten Analyzer-Gerät NANL-B500G-RE</td>
<td>76</td>
</tr>
<tr>
<td>32</td>
<td>Piktogramme</td>
<td>80</td>
</tr>
<tr>
<td>33</td>
<td>Signalwörter</td>
<td>80</td>
</tr>
</tbody>
</table>
Glossar

DHCP

DHCP-Client
Fordert vom DHCP-Server die IP-Adresse, die Subnetzmaske, die Gateway-Adresse und weitere Parameter für die Ethernet-Kommunikation an

DHCP-Server
Bietet die Zuweisung von IP-Adressen über das Protokoll DHCP als Dienst für andere Netzwerkteilnehmer an und erleichtert die IP-Adressvergabe wesentlich

Ethernet Device Configuration
Software-Werkzeug der Firma Hilscher, das u. a. beim netANALYZER-Gerät NANL-B500G-RE zur Konfiguration der IP-Adresse verwendet wird und für die Modi "statische IP-Adresse" oder "DHCP-Client" zum Einsatz kommt

GPIO
General Purpose Input/Output: universeller Eingang bzw. Ausgang

NANL-B500G-RE
netANALYZER portables Gerät mit Gigabit-Ethernet-PC-Schnittstelle für Echtzeit-Ethernet und alle 10/100BASE-T-Ethernet-Netzwerke

netANALYZER
System zur Aufzeichnung und Analyse des Datenverkehrs in Ethernet-Netzwerken das von Hilscher entwickelt wurde und hergestellt wird, bestehend aus einer speziellen Hardware (tragbares Gerät) und der dazugehörigen Software

PHY
Physikalisches Interface

TAP
Test Access Point

WinPcap
Library WinPcap; http://www.winpcap.org/

Wireshark
Netzwerk-Monitoring-Programm Wireshark; http://www.wireshark.org
Kontakte

HAUPTSITZ
Deutschland
Hilscher Gesellschaft für
Systemautomation mbH
Rheinstraße 15
65795 Hattersheim
Telefon: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com
Support
Telefon: +49 (0) 6190 9907-990
E-Mail: hotline@hilscher.com

NIEDERLASSUNGEN
China
Hilscher Systemautomation (Shanghai) Co. Ltd.
200010 Shanghai
Telefon: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn
Support
Telefon: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

Frankreich
Hilscher France S.a.r.l.
69800 Saint Priest
Telefon: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr
Support
Telefon: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

Indien
Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai, Bangalore
Telefon: +91 8888 750 777
E-Mail: info@hilscher.in
Support
Telefon: +91 8108884011
E-Mail: info@hilscher.in

Italien
Hilscher Italia S.r.l.
20090 Vimodrone (MI)
Telefon: +39 02 25007068
E-Mail: info@hilscher.it
Support
Telefon: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan
Hilscher Japan KK
Tokyo, 160-0022
Telefon: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp
Support
Telefon: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Republik Korea
Hilscher Korea Inc.
13494, Seongnam, Gyeonggi
Telefon: +82 (0) 31-739-8361
E-Mail: info@hilscher.kr
Support
Telefon: +82 (0) 31-739-8363
E-Mail: kr.support@hilscher.com

Österreich
Hilscher Austria GmbH
4020 Linz
Telefon: +43 732 931 675-0
E-Mail: sales.at@hilscher.com
Support
Telefon: +43 732 931 675-0
E-Mail: at.support@hilscher.com

Schweiz
Hilscher Swiss GmbH
4500 Solothurn
Telefon: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch
Support
Telefon: +41 (0) 32 623 6633
E-Mail: support.swiss@hilscher.com

USA
Hilscher North America, Inc.
Lisle, IL 60532
Telefon: +1 630-505-5301
E-Mail: info@hilscher.us
Support
Telefon: +1 630-505-5301
E-Mail: us.support@hilscher.com