Table of contents

1 Introduction .. 5
1.1 About this manual ... 5
1.1.1 Online help ... 5
1.1.2 List of revisions ... 5
1.2 Overview use cases ... 6
1.3 System requirements .. 7
1.4 About the EtherNet/IP Scanner DTM .. 8
1.5 Requirements EtherNet/IP Scanner DTM ... 8
1.6 DTM dialog structure ... 9
1.6.1 General device information .. 9
1.6.2 Navigation area .. 10
1.6.3 Dialog panes .. 10
1.6.4 OK, Cancel, Apply, Help, .. 10
1.6.5 Status bar .. 11
2 Safety ... 12
2.1 General note .. 12
2.2 Intended use .. 12
2.3 Personnel qualification .. 12
2.4 Safety messages .. 13
2.4.1 Communication stop caused by firmware or configuration download 13
2.4.2 Mismatching system configuration ... 13
2.5 Property damage ... 14
2.5.1 Power disconnect during firmware or configuration download 14
2.5.2 Invalid firmware ... 14
2.6 Safety messages on firmware or configuration download 15
3 Device start up .. 16
3.1 Configuration steps ... 16
3.2 Create project configuration .. 19
3.3 Start/stop communication ... 20
4 Settings ... 21
4.1 Overview settings for driver and device assignment ... 21
4.2 Verifying or adapting driver settings ... 24
4.3 Configuring drivers ... 26
4.3.1 cifX device driver .. 26
4.3.2 netX driver ... 26
4.3.3 Configuring netX driver .. 27
4.3.4 netX driver - USB/RS232 connection ... 28
4.3.5 netX driver - TCP/IP connection .. 30
4.4 Assigning device (with or without firmware) ... 33
4.4.1 Scanning for devices ... 33
4.4.2 Selecting the device (with or without firmware) ... 36
4.4.3 Selecting the device once more (with firmware) .. 36
4.5 Selecting and downloading firmware .. 38
4.6 Licensing ... 44
Table of contents

5 Licensing
- 5.1 Opening license dialog .. 45
- 5.2 License dialog .. 46
- 5.3 Which licenses are present in the device? 47
 - 5.3.1 License for master protocols .. 48
 - 5.3.2 Licenses for utilities ... 48
- 5.4 How to order a license? ... 49
- 5.5 Selecting license(s) .. 49
- 5.6 Ordering data ... 50
 - 5.6.1 Device information (ordering data read from the device) ... 50
 - 5.6.2 Data to manage the order (license information) 51
- 5.7 Ordering the license ... 52
 - 5.7.1 Ordering the license by e-mail 53
 - 5.7.2 Ordering the license by fax or by telephone 54
 - 5.7.3 Exporting license request to a file 55
- 5.8 How to get the license and transfer it to the device 56

6 Configuration
- 6.1 Overview configuring device parameters 57
- 6.2 Network settings ... 59
- 6.3 Scan list .. 61
 - 6.3.1 Set the IP address for the EtherNet/IP Adapter station ... 62
- 6.4 Process data .. 63
- 6.5 Address table .. 64
- 6.6 Quick connect table ... 65
- 6.7 Scanner settings ... 67
 - 6.7.1 Start of bus communication 67
 - 6.7.2 Application monitoring .. 68
 - 6.7.3 Module alignment ... 68
- 6.8 Connecting/disconnecting device .. 69
- 6.9 Download configuration .. 71

7 Diagnosis
- 7.1 Overview diagnosis .. 73
- 7.2 General diagnosis ... 74
- 7.3 Master diagnosis ... 76
- 7.4 Station diagnosis ... 77
- 7.5 Firmware diagnosis .. 78

8 Extended Diagnosis
- 8.1 Overview extended diagnosis ... 79
- 8.2 Task information: ... 80
- 8.3 IniBatch status ... 80
- 8.4 ENCAP_TASK .. 81
 - 8.4.1 Encap command counter ... 81
 - 8.4.2 Packet counter .. 82
 - 8.4.3 Code diagnosis .. 83
1 Introduction

1.1 About this manual

This manual provides information on how to set and configure the device parameters of a netX based EtherNet/IP Scanner device using the EtherNet/IP Scanner DTM, and what can be read from the diagnosis panes.

Refer to the operator manual, 'netDevice and netProject', how to create a network configuration, or in the user manual for the generic DTM, for EtherNet/IP Adapter devices, how to configure the EtherNet/IP Adapter device.

Error codes

All status and error codes you find in the API manual "Hilscher status and error codes".

1.1.1 Online help

The EtherNet/IP Scanner DTM contains an integrated online help.

➢ To open the online help, click on Help or press F1.

1.1.2 List of revisions

<table>
<thead>
<tr>
<th>Index</th>
<th>Date</th>
<th>Version</th>
<th>Component</th>
<th>Changes</th>
</tr>
</thead>
</table>
Chapter Error codes removed. See API Manual "Hilscher status and error codes" instead. |
| 12 | 2022-06-13 | 1.1100 | ENIPScannerDTM.dll, ENIPScannerGUI.ocx | Corrections. |
| 13 | 2022-06-21 | 1.1100 | ENIPScannerDTM.dll, ENIPScannerGUI.ocx | Additional corrections. |

Table 1: List of revisions
1.2 Overview use cases

In the table below you find an overview of the applicable use cases.

<table>
<thead>
<tr>
<th>Use case</th>
<th>Description</th>
<th>Chapter, section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device start up</td>
<td>• Creating project configuration</td>
<td>Device start up [page 16]</td>
</tr>
<tr>
<td></td>
<td>• Start/stop communication</td>
<td>Create project configuration [page 19]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Start/stop communication [page 20]</td>
</tr>
<tr>
<td>Driver and device assignment settings</td>
<td>• Verifying or adapting driver settings</td>
<td>Overview settings for driver and device assignment [page 21]</td>
</tr>
<tr>
<td></td>
<td>• Configuring drivers</td>
<td>Verifying or adapting driver settings [page 24]</td>
</tr>
<tr>
<td></td>
<td>• Assigning device (with or without firmware)</td>
<td>Configuring drivers [page 26]</td>
</tr>
<tr>
<td></td>
<td>• Selecting and downloading firmware</td>
<td>Assigning device (with or without firmware) [page 33]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selecting and downloading firmware [page 38]</td>
</tr>
<tr>
<td>Licensing</td>
<td>(licenses for master protocols)</td>
<td>Licensing [page 45]</td>
</tr>
<tr>
<td>Configuring device parameters</td>
<td>• Network Settings</td>
<td>Overview configuring device parameters [page 57]</td>
</tr>
<tr>
<td></td>
<td>• Scanlist</td>
<td>Network settings [page 59]</td>
</tr>
<tr>
<td></td>
<td>• Process Data</td>
<td>Scan list [page 61]</td>
</tr>
<tr>
<td></td>
<td>• Address Table</td>
<td>Process data [page 63]</td>
</tr>
<tr>
<td></td>
<td>• Quick Connect Table</td>
<td>Address table [page 64]</td>
</tr>
<tr>
<td></td>
<td>• Scanner Settings</td>
<td>Quick connect table [page 65]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Master settings</td>
</tr>
<tr>
<td>Connecting/disconnecting device</td>
<td>Establishing online connection</td>
<td>Connecting/disconnecting device [page 69]</td>
</tr>
<tr>
<td>Downloading configuration</td>
<td>Download to the device</td>
<td>Download configuration [page 71]</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>• General diagnosis</td>
<td>Overview diagnosis [page 73]</td>
</tr>
<tr>
<td></td>
<td>• Master diagnosis</td>
<td>General diagnosis [page 74]</td>
</tr>
<tr>
<td></td>
<td>• Firmware diagnosis</td>
<td>Master diagnosis [page 76]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Firmware diagnosis [page 78]</td>
</tr>
<tr>
<td>Extended diagnosis</td>
<td>Finding communication/configuration errors.</td>
<td>Overview extended diagnosis [page 79]</td>
</tr>
<tr>
<td>Packet Monitor</td>
<td>Test of send and receive data.</td>
<td>Packet monitor [page 96]</td>
</tr>
<tr>
<td>IO Monitor</td>
<td>Test of communication.</td>
<td>I/O monitor [page 99]</td>
</tr>
<tr>
<td>Process Image Monitor</td>
<td>Display fieldbus structure and data structure of the input and output data</td>
<td>Process image monitor [page 100]</td>
</tr>
<tr>
<td></td>
<td>of the devices transmitted on the bus.</td>
<td></td>
</tr>
<tr>
<td>User rights</td>
<td>Definition of access rights</td>
<td>User rights [page 103]</td>
</tr>
</tbody>
</table>

Table 2: Overview use cases
1.3 System requirements

- PC with 1 GHz processor or higher
- Windows® XP SP3,
 Windows® Vista (32-Bit) SP2,
 Windows® 7 (32-Bit and 64-Bit) SP1,
 Windows® 8 (32-Bit and 64-Bit),
 Windows® 8.1 (32-Bit and 64-Bit),
 Windows® 10 (32-Bit and 64-Bit)
- Administrator privilege required for installation
- Internet Explorer 5.5 or higher
- RAM: min. 512 MByte, recommended 1024 MByte
- Graphic resolution: min. 1024 x 768 pixel
- Keyboard and Mouse
- Restriction: Touch screen is not supported.

Note:
If the project file is used on a further PC,
- this PC must also comply with the above system requirements,
- the device description files of the devices used in the project must be imported into the configuration software SYCON.net on the new PC,
- and the DTMs of the devices used in the project must also be installed on that further PC.
1.4 About the EtherNet/IP Scanner DTM

The EtherNet/IP Scanner DTM is used to configure an EtherNet/IP Scanner device. The configuration is done using the FDT frame application SYCON.net, which serves as configuration software.

1.5 Requirements EtherNet/IP Scanner DTM

To configure the an EtherNet/IP Scanner device with the EtherNet/IP Scanner DTM the following requirements have to be accomplished:

- Completed hardware installation of a netX based DTM-compatible EtherNet/IP Scanner device, including loaded firmware, license and loaded cifX configuration file,
- Installed FDT/DTM V 1.2 compliant frame application,
- Loaded DTM in the Device Catalog of the FDT Framework.

Note:

If the EtherNet/IP Scanner DTM and the EtherNet/IP Scanner device are installed on the same PC, the cifX device driver must be installed on that PC, as you can connect the DTM to the device.

For more information to the hardware installation, please refer to the corresponding User Manual of your device. Information on how to order and to download the license to the device, you will find in this manual in the sections about the use case "Licensing".
1.6 DTM dialog structure

The graphical user interface of the DTM is composed of different areas and elements listed hereafter:

1. A header area containing the **General device information**,
2. the **Navigation area** (area on the left side),
3. The **Dialog pane** (main area on the right side),
4. **OK, Cancel, Apply, Help**,
5. The **Status line** containing information e. g. the online-state of the DTM.

![Diagram of DTM dialog structure](Image)

Figure 1: Dialog structure EtherNet/IP Scanner DTM

1.6.1 General device information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO device</td>
<td>Device name</td>
</tr>
<tr>
<td>Vendor</td>
<td>Vendor name of the device</td>
</tr>
<tr>
<td>Device ID</td>
<td>Identification number of the device</td>
</tr>
<tr>
<td>Vendor ID</td>
<td>Identification number of the vendor</td>
</tr>
</tbody>
</table>

Table 3: General device information
1.6.2 Navigation area

In the navigation area, you can select the individual dialog panes via the folder structure of the DTM.

![Navigation Area](image)

- Select the required folder and subfolder.
- The corresponding dialog pane appears.
- Click to hide or to open the navigation area.

1.6.3 Dialog panes

At the dialog pane the Settings, Configuration, Diagnosis/Extended Diagnosis or the Tools panes are opened via the corresponding folder in the navigation area.

1.6.4 OK, Cancel, Apply, Help,

In the configuration software SYCON.net the following is valid:

<table>
<thead>
<tr>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>To confirm your latest settings, click OK. All changed values will be applied on the frame application database. The dialog then closes.</td>
</tr>
</tbody>
</table>
| Cancel | To cancel your latest changes, click **Cancel**. Answer to the safety query "Configuration data has been changed. Do you want to save the data?" by **Yes**, **No** or **Cancel**.
 - **Yes**: The changes are saved or the changed values are applied on the frame application database. The dialog then closes.
 - **No**: The changes are *not* saved or the changed values are *not* applied on the frame application database. The dialog then closes.
 - **Cancel**: Back to the DTM. |
| Apply | To confirm your latest settings, click **Apply**. All changed values will be applied on the frame application database. The dialog remains opened. |
| Help | To open the DTM online help, click **Help**. |

Table 4: OK, Cancel, Apply, Help
1.6.5 Status bar

The status bar displays information about the current state of the DTM. The current activity, e.g. download, is signaled graphically via icons in the status bar.

<table>
<thead>
<tr>
<th>Status field</th>
<th>Icon / description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DTM connection states</td>
</tr>
<tr>
<td></td>
<td>Connected: Icon closed = Device is online</td>
</tr>
<tr>
<td></td>
<td>Disconnected: Icon opened = Device is offline</td>
</tr>
<tr>
<td>2</td>
<td>Data source states</td>
</tr>
<tr>
<td></td>
<td>Data set: The displayed data is read out from the instance data set (database).</td>
</tr>
<tr>
<td></td>
<td>Device: The displayed data is read out from the device.</td>
</tr>
<tr>
<td>3</td>
<td>States of the instance data set</td>
</tr>
<tr>
<td></td>
<td>Valid Modified: Parameter is changed (not equal to data source).</td>
</tr>
<tr>
<td>4</td>
<td>Changes directly made on the Device</td>
</tr>
<tr>
<td></td>
<td>Load/configure diagnosis parameters: Diagnosis is activated.</td>
</tr>
<tr>
<td>6</td>
<td>Device diagnosis status</td>
</tr>
<tr>
<td></td>
<td>Save operation succeeded: The save operation has been successful. Further messages due to successful handling of device data.</td>
</tr>
<tr>
<td></td>
<td>Firmware Download: Firmware download is running</td>
</tr>
<tr>
<td></td>
<td>Save operation failed: The save operation has failed. Further fail operation messages due to incorrect communication due to malfunction in the field device or its peripherals.</td>
</tr>
</tbody>
</table>

Table 5: Status bar icons [1]

Table 6: Status bar display examples
2 Safety

2.1 General note

The documentation in the form of a user manual, an operating instruction manual or other manual types, as well as the accompanying texts, have been created for the use of the products by qualified personnel. When using the products, all Safety Messages, Integrated Safety Messages, Property Damage Messages and all valid legal regulations must be obeyed. Technical knowledge is presumed. The user has to assure that all legal regulations are obeyed.

2.2 Intended use

The EtherNet/IP Scanner DTM serves for configuration and diagnosis of EtherNet/IP Scanner devices.

2.3 Personnel qualification

Personnel responsible for the application of the network system shall be aware of the system behavior and shall be trained in using the system.
2.4 Safety messages

2.4.1 Communication stop caused by firmware or configuration download

If you want to perform either a firmware update (as a download) or a configuration download, both via the EtherNet/IP Scanner DTM, please be aware of the following:

- Together with the firmware download, an automated reset to the device is performed that will interrupt all network communication and all established connections will drop.

- If you download the configuration during bus operation, the communication between master and slaves stops.

Possible faulty system operation

- An unpredictable and unexpected behavior of machines and plant components may cause personal injury and property damage.

 - Stop the application program, before starting the firmware update or before downloading the configuration.

 - Make sure that your equipment operates under conditions that prevent personal injury or property damage. All network devices should be placed in a fail-safe mode, before starting the firmware update or before downloading a configuration.

Loss of device parameters, overwriting of firmware

- Both the firmware download and the configuration download erase the configuration database. The firmware download overwrites the existing firmware in the network device.

 - To complete the firmware update and to make the device operable again, re-load the configuration after the firmware update has been finished.

Device parameters that have been saved volatile, e. g. as the temporarily set IP address parameters, are getting lost during the reset.

- In order to prevent loss of configuration data, make sure that your project configuration data are saved non-volatile, before you initiate a firmware update or download the configuration.

- In order to prevent loss of configuration data, before you initiate a firmware update or download the configuration, make sure that your project configuration data are saved non-volatile.

2.4.2 Mismatching system configuration

Mismatching system configuration loaded into the device may result in faulty data mapping in the application program. Thus, unexpected equipment operation may cause personal injury or damage to equipment.

- In the device, use only a configuration suitable for the system.
2.5 Property damage

2.5.1 Power disconnect during firmware or configuration download

If during the process of downloading a firmware or configuration,
- the power supply to a PC with the software application is interrupted,
- or the power supply to the EtherNet/IP Scanner device is interrupted,
- or a reset to the device is done.

This may lead to the following consequences:

Loss of device parameters, firmware corruption
- The firmware download or the configuration download is interrupted and remains incomplete.
- The firmware or the configuration database will be corrupted and device parameters will be lost.
- Damage to the device may occur, as the device cannot be rebooted.

Whether these consequences occur depends on when the power disconnect occurs during the download.
- During configuration download process, do not interrupt the power supply to the PC or to the device, and do not perform a reset!

Otherwise, you might be forced to send in your device for repair.

Power drop during write and delete accesses in the file system

The FAT file system in the netX firmware is subject to certain limitations in its operation. Write and delete accesses in the file system (firmware update, configuration download etc.) can destroy the FAT (File Allocation Table) if the accesses cannot be completed if the power drops. Without a proper FAT, a firmware may not be found and cannot be started.

Make sure that the power supply to the device is not interrupted during write and delete accesses in the file system (firmware update, configuration download, etc.).

2.5.2 Invalid firmware

Loading invalid firmware files could render your module unusable.
- Only load firmware files to the device that are valid for this device.

Otherwise, you might be forced to send in your device for repair.
2.6 Safety messages on firmware or configuration download

If you perform a firmware download or a configuration download via the EtherNet/IP Scanner DTM, adhere to the following warnings:

WARNING

Communication stop caused by firmware or configuration download

Initiating a firmware or configuration download process during bus operation will stop the communication and a subsequent plant stop may cause unpredictable and unexpected behavior of machines and plant components, possibly resulting in personal injury and damage to your equipment.

The firmware download overwrites the existing firmware. The communication stop may cause loss of device parameters and the device may be damaged.

- Stop the application program, before you start the firmware or configuration download.
- Make sure that all network devices are in a fail-safe condition.

WARNING

Mismatching system configuration

Mismatching system configuration loaded into the device may result in faulty data mapping in the application program. Thus, unexpected equipment operation may cause personal injury or damage to equipment.

- In the device, use only a configuration suitable for the system.

NOTICE

Power disconnect while downloading firmware or configuration

If the power supply to the PC or device is interrupted while the firmware or configuration is being downloaded, the download will be aborted, the firmware may be corrupted, the device parameters may be lost, and the device may be damaged.

- During firmware or configuration download process, do not interrupt the power supply to the PC or to the device, and do not perform a reset to the device!

NOTICE

Invalid firmware

Loading invalid firmware files could render your device unusable.

- Only proceed with a firmware version valid for your device.
3 Device start up

3.1 Configuration steps

The following overview provides to you the step sequence on how to configure a netX based EtherNet/IP Scanner device with EtherNet/IP Scanner DTM as it is typical for many cases. It is assumed at this point that the hardware installation has been completed.

<table>
<thead>
<tr>
<th>Step</th>
<th>Brief description</th>
<th>Further information</th>
</tr>
</thead>
</table>
| Add EtherNet/IP Adapter in the device catalog | Open configuration software SYCON.net. Add device by importing the device description file to the Device Catalog.
- **Network > Import device descriptions.** | Section Create project configuration [* page 19], or Operating instruction manual “SYCON.net” and Operating instruction manual “netDevice and netProject” |
| Load device catalog | - Select **Network > Device catalog.**
- **Reload catalog.** | |
| Create new project / Open existing project | - Select **File > New** or **File > Open.** | |
| Insert the master device and the adapter device and into configuration | - In the **Device catalog**, select the master device and insert the device via drag & drop **to the line** in the network view.
- In the **Device catalog**, select the adapter device and insert the device via drag and drop **to the master bus line** in the network view.*
*This step will not be necessary if the network structure is scanned automatically.
Important! In order to select the desired device in the device catalog, note the details about the DTM and the device at the bottom of the window. When sorting by fieldbus, display of multiple devices with identical names by different vendors is possible. | |
| Open scanner DTM configuration dialog | Open the scanner DTM configuration dialog.
- Double click to the device icon of the scanner.
- The scanner DTM configuration dialog is displayed. | |
| Verify or adapt driver settings | In the scanner DTM configuration dialog:
- select **Settings > Driver.**
Note! For PC cards cifX the **cifX device driver** is preset as a default driver. For all the other Hilscher devices, the **netX driver** is preset as a default driver.
- Use the **cifX device driver** if the EtherNet/IP Scanner DTM is installed on the same PC as the EtherNet/IP Scanner device.
- Use the **netX driver** to establish a USB, Serial (RS232) or TCP/IP connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device.
- The **3Sgateway driver for netX (V3.x)** is used only in relationship with CODESYS.
To search for devices you can check one or multiple drivers simultaneously.
- Verify that the default driver is checked.
- If necessary, check another driver or multiple drivers. | Section Overview settings for driver and device assignment [* page 21] or Verifying or adapting driver settings [* page 24] |
<table>
<thead>
<tr>
<th>Step</th>
<th>Brief description</th>
<th>Further information</th>
</tr>
</thead>
</table>
| Configure driver | If you use the **netX driver**, you respectively must configure it.
For netX Driver and communication via TCP/IP set the IP address of the device.
- Select **Settings > Driver > netX driver > TCP connection**.
- Via add an IP range.
- Under **IP address** enter the IP Address of the device or an IP range.
- Click **Save**.
Adjust the driver parameters **netX driver USB/RS232** only if they differ from the default settings.
Note!
- The **cifX device driver** requires no configuration.
- The configuration of the **3Sgateway driver for netX (V3.x)** is carried out via the CODESYS user interface. | **Configuring netX driver** [† page 27] |
| Assign master device (with or without firmware) | Assign the master device to this driver.
In the scanner DTM configuration dialog:
- Select **Settings > Device assignment**.
- select a master device (with or without firmware),
- therefore check the appropriate checkbox.
- Click **Apply**.
Assigning device (with or without firmware) [† page 33] |
| Select and download firmware | If not yet a firmware was loaded to the device:
- Adhere to the necessary safety precautions to prevent personnel injury and property damage.
In the scanner DTM configuration dialog:
- Select **Settings > Firmware download**,
- clock **Browse**...
- select a firmware file,
- click **Open**.
- Click **Download and Yes**.
Safety messages on firmware or configuration download [† page 15] |
| Assign master device once more (with firmware and system channel) | In the scanner DTM configuration dialog:
- Select **Settings > Device assignment**,
- click **Scan**,
- select the master device (with loaded and defined system channel),
- therefore check the appropriate checkbox.
- Click **Apply**.
- Close the scanner DTM configuration dialog via **OK**.
Selecting the device once more (with firmware) [† page 36] |
| Configure adapter device | Configure the adapter device.
- Double click to the device icon of the adapter.
- The adapter DTM configuration dialog is displayed.
In the adapter DTM configuration dialog:
- Select **Configuration > Modules** (for modular DTM only),
- configure the modules of the modular EtherNet/IP Adapter
- select **Configuration > Electronic keying**,
- select the keying method and configure it if necessary,
- select **Configuration > Connection**,
- configure the connection points,
- select **Configuration > Assembly**,
- configure Instance ID and Data length,
- configure a modular device according to the description **Configuring a modular EtherNet/IP Adapter**.
- Close the adapter DTM configuration dialog via **OK**.
Configure master device

Configure the scanner device.
- Double-click to the device icon of the scanner.
- The scanner DTM configuration dialog is displayed.
In the scanner DTM configuration dialog:
- Select **Configuration > Network settings**.
 For "Quick Connect" the adapter devices must be configured as MDI or MDIX.
- Set the network settings,
- select **Configuration > Scan list**,
- select the required connection or set the IP address of the adapter.
- Select **Configuration > Process data**,
- assign symbolic names to the configured modules or measurement signals,
- select **Configuration > Address table**,
- Set the device address if necessary,
- select **Configuration > Quick connect table**,
- check **Quick connect** for each adapter device that is to operate as a "Quick Connect" adapter,
- select **Configuration > Scanner settings**,
- set the scanner settings.
- Close the scanner DTM configuration dialog via **OK**.

Save project

- Select **File > Save**.

Connect master device

- Right click to the device icon of the scanner,
- select **Connect**.

Download configuration

- Adhere to the necessary safety precautions to prevent personnel injury and property damage that may occur in consequence of a communication stop or in consequence of a mismatching system configuration.
- Right click to the device icon of the scanner,
- select **Download**.

Live list

Via the context menu **Additional functions > Live list** you can display the devices present at the bus.

I/O monitor

- Right click to the device icon of the master,
- select **Diagnosis**,
- select **Tools > I/O monitor**,
- check the input or output data,
- Close the I/O monitor dialog via **OK**.

Disconnect

- Right click to the device icon of the Master,
- select **Disconnect**.

Diagnosis

- Right click to the device icon of the master.
- Select **Diagnosis**.
- The master DTM diagnosis dialog is displayed.
1. Check whether the communication is OK:
 - **Diagnosis > General diagnosis > Device status**
 - "Communication" must be green!
2. "Communication" is green: Open the I/O monitor and test the input or output data.
3. "Communication" is not green: Use diagnosis and extended diagnosis for troubleshooting.
- Close the master DTM diagnosis dialog via **OK**.

Sections

- **Overview configuring device parameters** [page 57]
- **Network settings** [page 59]
- **Scan list** [page 61]
- **Process data** [page 63]
- **Address table** [page 64]
- **Quick connect table** [page 65]
- **Master settings**
- **Connecting/disconnecting device** [page 69]
- **Safety messages on firmware or configuration download** [page 15]
- **Download configuration** [page 71]
- **Live List**
- **I/O monitor** [page 99]
- **Connecting/disconnecting device** [page 69]
- **Diagnosis** [page 73]
- **Extended Diagnosis** [page 79]

Table 7: Getting started – Configuration steps
3.2 Create project configuration

1. Complete the slave device in the device catalog.
 - Open configuration software SYCON.net.
 - Add the slaves in the device catalog by importing the device description file.
 - Select **Network > Import device descriptions**.

2. Load device catalog
 - Select **Network > Device catalog**.
 - Select **Reload catalog**.

3. Create or open a project
 - Create new project / open existing project:
 - Select **File > New** or **File > Open**.

4. Insert master or slave device in configuration.
 - In the device catalog click to the master device and insert the device via drag and drop to the line in the network view.
 - In the Device Catalog click to the slave device* and insert the device via drag and drop to the master bus line in the network view.*

*This step will not be necessary if the network structure is scanned automatically.

Important:

In order to select the desired device in the device catalog, note the details about the DTM and the device at the bottom of the device catalog window. When sorting by fieldbus, several devices with the same name from different vendors can be displayed.

For further information, see operating instruction manual "SYCON.net" or "netDevice and netProject".
3.3 Start/stop communication

You can manually start or stop the communication between an EtherNet/IP Scanner device and EtherNet/IP Adapter devices.

- **Start communication** can be enabled if the communication was stopped before or if the configuration requires this (controlled release of communication).
- **Stop communication** can be enabled if the communication was started.

To start or to stop the communication, proceed as follows:

Start communication
- Connecting device:

 ➢ Select **Additional functions > Service > Start communication** from the context menu (right mouse click).
 ➢ The device communicates at the bus.

Stop communication

WARNING Faulty system operation possible, overwriting of firmware or loss of device parameters

Before stopping the communication:
- Stop the application program.
- Make sure that all network devices are in a fail-safe condition.

After carrying out the security measures:
- Select **Additional functions > Service > Stop communication** from the context menu (right mouse click).
 ➢ The communication of the device at the bus is stopped.

Note:
To manually start the communication of the device at the bus, an online connection from the EtherNet/IP Adapter DTM to the EtherNet/IP Adapter device is required. Further information can be found in the section Connecting/disconnecting device [page 69].
4 Settings

4.1 Overview settings for driver and device assignment

Under "Settings" you can make different basic settings for your device:

- To establish a connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device, check whether the default driver is hooked up in the dialog box Driver and if necessary, check another or several drivers.

- In the Device assignment pane, select the device and assign it to the driver.

- The dialog in the Firmware download pane is used to load a new firmware into the device.

- The dialog in the Licensing or License pane allows you to order licenses for master protocols and utilities and transfer them to your device.

![Navigation Area](image)

Figure 4: Navigation area - Settings (example)

There may be more drivers.

Note:

To edit the dialog boxes under Settings, you need the user rights for "Maintenance".

Overview on steps

To establish a connection between the EtherNet/IP Scanner DTM and the EtherNet/IP Scanner device, the following steps are required:

1. Verifying or adapting driver settings

 - In the FDT container, **netDevice** double-click on the EtherNet/IP Scanner icon.

 - The DTM configuration dialog opens.

 - Check whether the default driver is checked and if necessary, tick another or several drivers.

 - Select **Settings > Driver**.

Note:

For PC cards cifX the **cifX device driver** is preset as a default driver. For all the other Hilscher devices, the **netX driver** is preset as a default driver.
• Use the **cifX device driver** if the EtherNet/IP Scanner DTM is installed on the same PC as the EtherNet/IP Scanner device.

• Use the **netX driver** to establish an USB, Serial (RS232) or TCP/IP connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device.

• The **3Sgateway driver for netX (V3.x)** is used only in relationship with CODESYS. The version V3.x refers to the driver version defined by 3S-Smart Software Solutions GmbH.

To search for devices on the network, you can check one or more drivers at the same time.

- Check if the default driver for your device is checked.
- Respectively check another driver or multiple drivers.

2. Configuring drivers

- If you use the **netX driver**, you respectively must configure it.

Note:

The **cifX device driver** requires no configuration.

The configuration of the **3Sgateway driver for netX (V3.x)** is carried out via the CODESYS surface.

- Go to **Settings > Driver > netX driver** to open the driver dialog box for the **netX driver** and if necessary, press **F1**, so that the separate help for the **netX driver** appears.

- For **netX Driver** and communication via TCP/IP set the IP address of the device.

Adjust the driver parameters **netX driver USB/RS232** only if they differ from the default settings.

3. Assigning the master device to the DTM

- First, you scan for the device (with or without firmware) and select the device.

- Select **Settings > Device assignment**.

- Under **Device selection**, select **suitable only or all** and click **Scan**.

- In the table, check the required devices.

- Select **Apply**.
4. Selecting and downloading the firmware
 - If not yet a firmware was loaded to the device, select and download the firmware.
 - Select Settings > Firmware download.
 - Select and download the firmware via Download.
 - Click Apply.
 - Scan for and select the devices (with firmware and defined system channel) once more. For repeated download this step is omitted.
 - Select Settings > Device assignment.
 - Select Scan.
 - In the table, check the required device.
 - Close the DTM configuration dialog via OK.

5. Connecting the device
 - In netDevice put a right-click on the EtherNet/IP Scanner icon.
 - Select the Connect command from the context menu.
 - In the network view, the device description at the device icon of the scanner is displayed with a green colored background. The EtherNet/IP Scanner device now is connected to the EtherNet/IP Scanner DTM via an online connection.

For more information on the required settings, see sections Verifying or adapting driver settings [page 24], Assigning device (with or without firmware) [page 33], Selecting and downloading firmware [page 38] or Licensing [page 44].

Descriptions of the netX Driver are available in the DTM user interface as online help:
 - Therefore, click Settings > Driver > netX driver and press the F1 key.
4.2 Verifying or adapting driver settings

The **Driver** dialog pane displays the drivers available to establish a connection from the EtherNet/IP Scanner DTM to the device.

Note:
A default driver is set in the configuration software.

Proceed as follows:

1. Select driver.
 - Select **Settings > Driver** in the navigation area.
 - The **Driver** dialog pane is displayed. This shows the available drivers and the pre-setting of the default driver.

 ![Figure 5: Default driver cifX Device Driver for PC cards cifX (example)](image5)

 ![Figure 6: Default driver netX Driver for Hilscher devices except for PC cards cifX (example)](image6)

 Table 8: Parameters of the driver selection list

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver</td>
<td>Name of the driver. (For further details, see the descriptions of the action steps.) Default driver (Pre-settings in the configuration software): For PC cards cifX the cifX device driver is preset as a default driver. For all the other Hilscher devices the netX driver is preset as a default driver. To search for devices you can check multiple drivers simultaneously.</td>
</tr>
<tr>
<td>Version</td>
<td>ODMV3 version of the respective driver</td>
</tr>
<tr>
<td>ID</td>
<td>ID of the driver (driver identification)</td>
</tr>
</tbody>
</table>

2. Verify whether the default driver is checked.
 - To establish a connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device, check whether the default driver is hooked up in the dialog box **Driver** and if necessary, check another or several drivers.

3. Respectively check another driver or multiple drivers.
 - Check the checkbox for the driver in the selection list.

Note:
The driver used for the connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device must be supported by the device and must be available for the device.
- Use the **cifX device driver** if the EtherNet/IP Scanner DTM is installed on the same PC as the EtherNet/IP Scanner device.

- Use the **netX driver** to establish an USB, Serial (RS232) or TCP/IP connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device.

- The **3Sgateway driver for netX (V3.x)** is used only in relationship with CODESYS. The version V3.x refers to the driver version defined by 3S-Smart Software Solutions GmbH.

To search for devices on the network you can check multiple drivers simultaneously.

<table>
<thead>
<tr>
<th>Driver</th>
<th>Version</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFX Device Driver</td>
<td>1.10.1.1.9801</td>
<td>{3685EC5B-0F92-4C0E-B4A9-54F634E7AAFA}</td>
</tr>
<tr>
<td>3SGateway Driver for netX (V3.x)</td>
<td>0.9.1.2</td>
<td>{797CD3A6-4CPS-4259-8E4D-109D669EA921}</td>
</tr>
<tr>
<td>netX Driver</td>
<td>1.103.2.5133</td>
<td>{B54C8CC7-F333-4135-8105-6E12F9853E52}</td>
</tr>
</tbody>
</table>

Figure 7: Manual selection of multiple drivers (example)
4.3 Configuring drivers

4.3.1 cifX device driver

In the EtherNet/IP Scanner DTM for the cifX device driver no driver dialog pane is available, since for the cifX device driver no driver settings are required.

The cifX device driver will be used if the EtherNet/IP Scanner DTM is installed in the same PC as the EtherNet/IP Scanner device.

Note:

To establish a connection from a DTM to a master device via the cifX device driver, the cifX device driver must be installed and the driver must have access to the master device.

4.3.2 netX driver

The netX driver is used to connect the DTM to the device via different connection types. The DTM communicates with the device via an USB connection, a serial (RS232) connection or a TCP/IP connection. The netX Driver establishes

- via the USB interface of the device and the USB port of the PC an USB connection to the device,
- via the RS232 interface of the device and the COM port of the PC a serial connection (RS232) to the device
- and via Ethernet a TCP/IP connection to the device.

To connect the DTM to the physical layer of the device the netX driver software works in combination with the software components:

- “USB/COM connector” for the USB connection and for the serial connection (RS232) and
- “TCP/IP connector” for the Ethernet connection.
4.3.3 Configuring netX driver

The following steps are required to configure the netX driver:

USB/RS232 Connection

To set the driver parameters for an USB/RS232 connection note:

Note:

Adjust the driver parameters netX driver USB/RS232 only if they differ from the default settings. After saving the changed driver parameters, these parameters are used for the device assignment when scanning devices.

For setting the driver parameters for an USB connection or a serial connection:

1. Set the driver netX driver USB/RS232 parameters.
 - Open the driver dialog via **Settings > Driver > netX driver > USB/RS232 connection**.

TCP/IP connection

For setting the driver parameters for a TCP/IP connection:

2. Set IP address of the device.
 - Select **Settings > Driver > netX driver > TCP connection**.
 - Add an IP range via **Select IP range**.
 - Under **IP range configuration > IP address** enter the IP address of the device (**Use IP range** is unchecked).

3. Or set IP range:
 - Check **Use IP range**.
 - Under **IP range configuration > IP address** enter the start address (left side) and the ending address of the IP scanning range (right side).

4. Save the IP address or the IP search range.
 - Click on **Save**.
 - After saving the changed driver parameters, these parameters are used for the device assignment when scanning devices.
4.3.4 netX driver - USB/RS232 connection

The communication from the DTM to the device via an USB/RS232 connection is used when the DTM is installed on a PC and between the PC and the device

- an USB connection,
- or a serial connection (RS232) exists.

The DTM accesses the device via the USB interface or via the RS232 interface. This requires either to connect an USB port of the PC to the USB interface of the device using an USB cable or to connect a physical COM port of the PC to the RS232 interface of the device via a serial cable.

The netX driver / USB/RS232 connection supports all physical and virtual COM ports available on the PC.

Via the RS232 interface or USB interface, the device is configured or diagnosis is performed.

4.3.4.1 Driver parameters for netX driver - USB/RS232 connection

The settings of the driver parameters for the USB/RS232 connection are made via the netX driver / USB/RS232 connection configuration dialog.

- Open the USB/RS232 connection dialog via navigation area Settings > Driver > netX driver.
- The USB/RS232 connection dialog is displayed:

![Figure 8: cifX driver > USB/RS232 connection](image)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range of value / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable USB/RS232 connector (restart of ODM required)</td>
<td>checked: The cifX driver can communicate via the USB/RS232 interface. unchecked: The cifX driver cannot communicate via the USB/RS232 interface. If the check mark for Enable USB/RS232 connector is set or removed, then the ODM server must be restarted(^1), to make the new setting valid.</td>
<td>checked, unchecked; Default: unchecked</td>
</tr>
<tr>
<td>Select port</td>
<td>Depending on the COM ports (interfaces) available on the PC, they will be listed under Select port.</td>
<td>COM 1 to COM N</td>
</tr>
</tbody>
</table>

Port configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range of value / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable port</td>
<td>checked: No connection. unchecked: The cifX driver tries to establish a connection using the configured USB/RS232 interface.</td>
<td>checked, unchecked (Default)</td>
</tr>
<tr>
<td>Baud rate</td>
<td>Transfer rate: Number of bits per second. The device must support the baud rate.</td>
<td>9.6, 19.2, 38.4, 57.6 bzw. 115.2 [kBit/s]; Default (RS232): 115.2 [kBit/s]</td>
</tr>
<tr>
<td>Stop bits</td>
<td>Number of stop bits sent after the transfer of the send data for synchronization purposes to the receiver. Stop-Bit: 1, 1.5, 2; Default (RS232): 1</td>
<td></td>
</tr>
<tr>
<td>Send timeout</td>
<td>Maximum time before the transfer of the transmission data is canceled, when the send process fails, for example, because of the transfer buffer is full.</td>
<td>100 ... 60.000 [ms]; Default (RS232 and USB): 1000 ms</td>
</tr>
<tr>
<td>Reset timeout</td>
<td>Maximum time for a device reset, including the re-initialization of the physical interface used for the communication.</td>
<td>100 ... 60.000 [ms]; Default (RS232 and USB): 5000 ms</td>
</tr>
<tr>
<td>Byte size</td>
<td>Number of bits per byte by byte specification</td>
<td>7 Bit, 8 Bit; Default (RS232): 8 Bit</td>
</tr>
<tr>
<td>Parity</td>
<td>In the error detection in data transmission using parity bits, "parity" describes the number of bits occupied with 1 in the transmitted information word. No Parity: no parity bit Odd Parity: The parity is "odd" if the number of bits occupied with 1 in the transmitted information word will be odd. Even parity: The parity is "even" if the number of bits occupied with 1 in the transmitted information word will be even. Mark Parity: if the parity bit is always 1, this will be named mark-parity (the bit does not contain any information). Space Parity: if the parity bit always 0, this will be named space-parity (the bit represents an empty space).</td>
<td>No Parity, Odd Parity, Even Parity, Mark Parity, Space Parity; Default (RS232): No Parity</td>
</tr>
<tr>
<td>Keep alive timeout</td>
<td>The "Keep Alive" mechanism is used to monitor whether the connection to the device is active. connection errors are detected using a periodic heartbeat mechanism. The heartbeat mechanism will be initiated after the set time has elapsed if the communication has failed.</td>
<td>100 ... 60.000 [ms]; Default (RS232 and USB): 2000 ms</td>
</tr>
<tr>
<td>Restore</td>
<td>Resets all settings in the configuration dialog to the default values.</td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td>Saving all settings made in the configuration dialog cifX driver > USB/RS232 connection, i. e. only for the selected connection type.</td>
<td></td>
</tr>
<tr>
<td>Save all</td>
<td>Saving all settings made in the configuration dialog cifX driver, i. e. for all connection types.</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Restart the ODM server via the ODMV3 tray application:
- In the foot line click on using the right mouse key.
- In the context menu select Service > Start.
4.3.5 netX driver - TCP/IP connection

The communication from the DTM to the device via a TCP/IP connection is used in the following two typical applications:

Application 1: The device has its own Ethernet interface. The DTM is installed on a PC and the TCP/IP connection is established from this PC to the stand-alone device. The IP address of the device is used.

Application 2: The device is installed in a remote PC. The DTM is installed on an additional PC and the TCP/IP connection is established from this PC to the remote PC. The IP address of the remote PC is used. For the TCP/IP connection to be made, on the remote PC the cifX TCP/IP server must be started. The cifX TCP/IP server allows the remote access to the device via a TCP/IP connection.

Note:
An exe file for the cifXTCP/IP server is provided on the product CD in the Tools directory.

Via the TCP/IP interface of the device or of the remote PC, the device is configured or diagnosis is performed.
4.3.5.1 Driver parameters for cifX driver - TCP/IP connection

The settings for the driver parameters for the TCP/IP connection are made via the **netX driver / TCP connection** configuration dialog.

- Open the **TCP connection** dialog via navigation area **Settings > Driver > netX driver**.
- The dialog **netX driver** is displayed:
- Select **TCP connection**.

Figure 9: netX driver > TCP connection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range of value / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable TCP connector (restart of ODM required)</td>
<td>checked: The cifX driver can communicate via the TCP/IP interface. Unchecked: The cifX driver cannot communicate via the TCP/IP interface. If the check mark for Enable TCP connector is set or removed, then the ODM server must be restarted(^1), to make the new setting valid.</td>
<td>checked, unchecked; Default: unchecked</td>
</tr>
<tr>
<td>Select IP range</td>
<td>Via Select IP range already created IP ranges can be selected. Via an additional IP range can be added. Via an IP range can be deleted.</td>
<td></td>
</tr>
<tr>
<td>Scan timeout [ms]</td>
<td>With Scan timeout can be set, how long to wait for a response while a connection is established.</td>
<td>10 ... 10,000 [ms]; Default: 100 ms</td>
</tr>
<tr>
<td>IP range configuration</td>
<td>Disable IP range checked: No connection. Unchecked: The cifX driver tries to establish a connection using the configured TCP/IP interface.</td>
<td>checked, unchecked (Default)</td>
</tr>
</tbody>
</table>

\(^1\) Restart the ODM server via the **ODMV3 tray application**:

- In the foot line click on ![right mouse key](image) using the right mouse key.
- In the context menu select **Service > Start**.
Table 10: Parameters netX driver > TCP connection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range of value / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address (links)</td>
<td>Enter the IP address of the device, (if Use IP range is not checked). Enter the IP address of the device, (if Use IP range is not checked).</td>
<td>valid IP address; Default: 192.168.1.1</td>
</tr>
<tr>
<td>Use IP range</td>
<td>checked: An IP address range is used. unchecked: Only one IP address is used.</td>
<td>checked, unchecked; Default: unchecked</td>
</tr>
<tr>
<td>IP address (right)</td>
<td>Enter the end address of the IP scanning range, (only if Use IP range is checked).</td>
<td>valid IP address; Default: 0.0.0.0</td>
</tr>
<tr>
<td>Address count</td>
<td>Displays the scanning range address count, depending on the selected IP-start or IP-end address. (For this read the note given below.)</td>
<td>recommended: 10</td>
</tr>
<tr>
<td>TCP Port</td>
<td>Identifies the endpoint of a logical connection or addresses a specific endpoint on the device or PC.</td>
<td>0 – 65535; Default Hilscher device: 50111</td>
</tr>
<tr>
<td>Send timeout</td>
<td>Maximum time before the transfer of the transmission data is canceled if the send process fails, for example, because of the transfer buffer is full.</td>
<td>100 ... 60.000 [ms]; Default (TCP/IP): 1000 ms</td>
</tr>
<tr>
<td>Reset timeout</td>
<td>Maximum time for a device reset, including the re-initialization of the physical interface used for the communication.</td>
<td>100 ... 99.999 [ms]; Default (TCP/IP): 20.000 ms</td>
</tr>
<tr>
<td>Keep alive timeout</td>
<td>The "Keep Alive" mechanism is used to monitor whether the connection to the device is active. Connection errors are detected using a periodic heartbeat mechanism. The heartbeat mechanism will be initiated after the set time has elapsed if the communication has failed.</td>
<td>100 ... 60.000 [ms]; Default (TCP/IP): 2000 ms</td>
</tr>
<tr>
<td>Restore</td>
<td>Resets all settings in the configuration dialog to the default values.</td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td>Saving all settings made in the configuration dialog cifX driver > TCP/IP connection, i. e. only for the selected connection type.</td>
<td></td>
</tr>
<tr>
<td>Save all</td>
<td>Saving all settings made in the configuration dialog cifX driver, i. e. for all connection types.</td>
<td></td>
</tr>
</tbody>
</table>

Note:

Do not use large IP ranges in combination with a low scan timeout. Microsoft introduced in Windows® XP SP2 a limit of concurrent half-open outbound TCP/IP connections (connection attempts), to slow the spread of virus and malware from system to system. This limit makes it impossible to have more than 10 concurrent half-open outbound connections. Every further connection attempt is put in a queue and forced to wait. Due to this limitation, a large IP range used in combination with a low scan timeout could prevent the connection establishment to a device.
4.4 Assigning device (with or without firmware)

Note:
In the **Device assignment** dialog pane, you first must assign the EtherNet/IP Scanner device to the EtherNet/IP Scanner DTM by checking the check box. This is essential to establish an online connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device later, as described in section **Connecting/disconnecting device** page 69.

Therefore, in the **Device assignment** dialog pane you scan for the EtherNet/IP Scanner device and select it.

If the device did not get a firmware or shall get a new firmware:
1. First you scan for the device (with or without firmware) and select the device,
2. then you download a firmware to the device, and
3. subsequently you scan for the device (with firmware) once more and select the device again.
 ➢ Proceed in the order mentioned.

4.4.1 Scanning for devices

➢ Select **Settings > Device assignment** in the navigation area.
➢ The dialog pane Device assignment is displayed.
➢ Under **Device selection**, select **suitable only**.
➢ Select **Scan**, to start the scanning process.
➢ In the table all devices are displayed, which can be connected to the EtherNet/IP Scanner DTM via the preselected driver.

<table>
<thead>
<tr>
<th>Device</th>
<th>Hardware Port 0/1/2/3</th>
<th>Slot number</th>
<th>Serial number</th>
<th>Driver</th>
<th>Channel Protocol</th>
<th>Access path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device CIP</td>
<td>-/PROFIBUS/-</td>
<td>1</td>
<td>20148</td>
<td>CIFX Device Driver</td>
<td>Undefined Undefined</td>
<td>...cifX3_SYS</td>
</tr>
</tbody>
</table>

Figure 10: Device Assignment - detected devices (example: device without firmware)

Note:
For devices, which have been found via the **cifX device driver** in the column **Access path** the indication ...\cifX[0toN]_SYS is displayed. This is correct, as long as a device did not get a firmware. After the firmware download has been completed, in the column Access path the indication ...\cifX[0toN]_Ch[0to3] is displayed.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range of value / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device selection</td>
<td>Selecting suitable only or all devices.</td>
<td>suitable only, all</td>
</tr>
<tr>
<td>Device</td>
<td>The device name (= name of the device class) of the EtherNet/IP Scanner device appears.</td>
<td></td>
</tr>
<tr>
<td>Hardware Port 0/1/2/3</td>
<td>Shows, which hardware is assigned to which communication interface.</td>
<td></td>
</tr>
<tr>
<td>Slot number</td>
<td>Shows the Slot number (card ID), preset at the PC card cifX via the Rotary switch slot number (card ID). The indication n/a means, that no Slot number (card ID) exists. This will occur if the PC card cifX is not equipped with a Rotary switch slot number (card ID) or for PC cards cifX equipped with a Rotary switch slot number (card ID) if the rotary switch is set to the value 0 (zero).</td>
<td>1 to 9, n/a</td>
</tr>
<tr>
<td>Serial number</td>
<td>Serial number of the device</td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>Name of the driver.</td>
<td></td>
</tr>
<tr>
<td>Channel Protocol</td>
<td>Shows, which firmware is loaded to which device channel. The data for the used channel consists of the protocol class and the communication class. a.) For devices without firmware: Undefined Undefined, b.) For devices with firmware: Protocol name corresponding to the used Firmware</td>
<td></td>
</tr>
<tr>
<td>Access path (last column on the right)</td>
<td>Depending on the used driver in the column Access path different data to the device is displayed. For the cifX device driver the following data is displayed: a.) For devices without firmware: …\cifX[0toN]_SYS, b.) For devices with firmware: …\cifX[0toN]_Ch[0to3]. cifX[0toN] = Board number 0 to N Ch[0to3] = Channel number 0 to 3.</td>
<td>Depending on the device and on the driver: board or channel number, IP address or COM interface</td>
</tr>
<tr>
<td>Access path (at the lower side of the dialog pane)</td>
<td>If in the table a device is checked, under Access path (at the lower side of the dialog pane) the driver identification or depending on the used driver additional data to the device will be displayed. For the cifX device driver the following data is displayed: a.) For devices without firmware: …\cifX[0toN]_SYS, b.) For devices with firmware: …\cifX[0toN]_Ch[0to3]. cifX[0toN] = Board number 0 to N Ch[0to3] = Channel number 0 to 3.</td>
<td>Driver identification (ID) Depending on the device and on the driver: board or channel number, IP address or COM interface</td>
</tr>
</tbody>
</table>

Table 11: Parameters of the Device Assignment
4.4.1.1 Selecting suitable only or all devices

All

- Under **Device selection** select all.
- Select **Scan**.

![Device Assignment](image)

Figure 11: Device Assignment - detected devices (example: device without firmware)

In the table all devices are displayed, which are attainable in the network and which can be connected to a single DTM each via the preselected drivers.

Note:

During a subsequent firmware download in the selection window **Select firmware file** all files from the selected folder are displayed, under **Files of type** „All Files (*.*)“ is displayed and the check box **Validate the selected firmware file.** is unchecked.

suitable only

- Under **Device selection** select suitable only.
- Select **Scan**.

In the table all devices are displayed, which can be connected to the EtherNet/IP Scanner DTM via the preselected driver.

Note:

During a subsequent firmware download in the selection window **Select firmware file** only firmware files from the selected folder are displayed, under **Files of type** „Firmware Files (*.nxm)“ or „Firmware Files (*.nxf)“ is displayed and the check box **Validate the selected firmware file.** is checked.
4.4.2 Selecting the device (with or without firmware)

![Note:]
A connection with the EtherNet/IP Scanner DTM can only be established with one EtherNet/IP Scanner device.

To select the physical EtherNet/IP Scanner device (with or without firmware):

- Check the appropriate device.
- Under **Access path** (below in the dialog pane) the access path to the device, e.g. the driver identification, or depending on the used driver additional access data of the device is displayed.
- Select **Apply**, to apply the selection.

![Figure 12: Device Assignment - selecting device (example: device without firmware / one device selected)](image)

- Before an online connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device can be established, a firmware must be loaded to the device and the device must be selected once more.
- For further information refer to section *Selecting and downloading firmware* [page 38] or to section *Selecting the device once more (with firmware)* [page 36].

4.4.3 Selecting the device once more (with firmware)

![Note:]
For repeated download this step is omitted.

To select the EtherNet/IP Scanner device (with firmware and defined system channel) once more, proceed as described hereafter:

- Under **Device selection** select **all** or **suitable only**.
- Select **Scan**.
- For selection **All**: The table shows all devices which can be reached in the network and which can be connected to a DTM via the preselected drivers.
For selection *suitable only*. In the table all devices are displayed, which can be connected to the EtherNet/IP Scanner DTM via the preselected drivers.

- Check the appropriate device.
- Select **Apply**, to apply the selection.
- Or select **OK**, to apply the selection and to close the DTM interface dialog.
- Connect the DTM to the device using the context menu (right mouse click).

Device Assignment

Scan progress: S/5 Devices (Current device: -)

<table>
<thead>
<tr>
<th>Device</th>
<th>Hardware Port 0/1/2/3</th>
<th>Slot number</th>
<th>Serial number</th>
<th>Driver</th>
<th>Channel Protocol</th>
<th>Access path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Ck</td>
<td>-/FR.CIFXBUS/</td>
<td>I</td>
<td>23149</td>
<td>CIFX Device Driver</td>
<td>PROFINET-DF Master</td>
<td>cifX0_Ch0</td>
</tr>
<tr>
<td>Device Cl</td>
<td>-/DeviceNet/</td>
<td>n/a</td>
<td>20027</td>
<td>CIFX Device Driver</td>
<td>DeviceNet Master</td>
<td>cifX1_Ch0</td>
</tr>
<tr>
<td>Device Cl</td>
<td>-/DeviceNet/</td>
<td>n/a</td>
<td>20058</td>
<td>netX Driver</td>
<td>Undefined Undefined</td>
<td>192.168.168.17</td>
</tr>
<tr>
<td>Device Cl</td>
<td>Ethernet/Ethernet/</td>
<td>n/a</td>
<td>20028</td>
<td>CIFX Device Driver</td>
<td>PROFINET IO Device</td>
<td>cifX2_Ch0</td>
</tr>
<tr>
<td>Device Cl</td>
<td>-/Canopy/</td>
<td>n/a</td>
<td>20022</td>
<td>CIFX Device Driver</td>
<td>Undefined Undefined</td>
<td>portal</td>
</tr>
</tbody>
</table>

Figure 13: Device Assignment - selecting device (example: devices with and without firmware / one device selected)

Note:

After the firmware download has been completed, for the devices which have been detected via the cifX Device Driver the following data is displayed:

In the column **Channel protocol**: The data for the firmware for the used channel

In the column **Access path** or under **Access path** (below in the dialog pane): The data: ...\cifX[0toN]_Ch[0to3].

cifX[0toN] = board number 0 to N

Ch[0to3] = channel number 0 to 3

For further information how to establish an online connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device, refer to section Connecting/disconnecting device [* page 69].
4.5 Selecting and downloading firmware

Requirements

Note:
Before downloading the firmware, you must select the driver and the Master device (with or without firmware) and assign the hardware to the device. For more information, see section *Overview settings for driver and device assignment* [page 21].

How to proceed

You can use the dialog *Firmware download* to transfer a firmware to the device. Load the firmware into the device as described below:

1. Select the firmware file.
 - In the navigation area, select **Settings > Firmware download**
 - The dialog pane **Firmware download** is displayed.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The path and name of the selected firmware file are displayed.</td>
</tr>
<tr>
<td>Version</td>
<td>The version and build version of the selected firmware file are displayed.</td>
</tr>
<tr>
<td>Browse...</td>
<td>Via "Browse..." you can select the firmware file to download.</td>
</tr>
<tr>
<td>Download</td>
<td>Via "Download" you can download the firmware to the device.</td>
</tr>
</tbody>
</table>

CAUTION:

The firmware download may stop the bus communication, erase the configuration database and overwrite the existing firmware in the device.

To complete the update and to make the device operable again, please re-download the configuration when this operation has finished.

![Screenshot of Firmware download dialog](image)

Table 12: Firmware download parameters

- Select **Browse...**
- If the device is not assigned to the hardware, the error message "The device is not assigned to the hardware!" is displayed.
Figure 15: Error Message “The device is not assigned to the hardware!”

- Click OK and select and assign the master device as described in section Assigning device (with or without firmware) [page 33].
- If a hardware has been assigned to the device, the selection window Select firmware file opens.
- Enlarge the selection window to view the columns Hardware and Version.

Figure 16: “Select firmware file” selection window (example CIFX)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range of value / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Name</td>
<td>File name of the firmware file</td>
<td>nxf, nxm</td>
</tr>
<tr>
<td>Column Firmware</td>
<td>Name of the firmware (consisting of the protocol name and the protocol class)</td>
<td></td>
</tr>
<tr>
<td>Column Hardware</td>
<td>Device class of the assigned hardware</td>
<td>e. g. CIFX, COMX, COMX 51, NETJACK 10, NETJACK 50, NETJACK 51, NETJACK 100, NETTAP 50 (Gateway), NETTAP 100 (Gateway), NETTAP 51 (Gateway)</td>
</tr>
<tr>
<td>Column Version</td>
<td>Firmware version</td>
<td>x.x (build x)</td>
</tr>
<tr>
<td>Tooltip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File of Type</td>
<td>"All Files (.)" if before in the Device assignment pane the list entry all was selected.</td>
<td>All Files (.), Firmware Files (.nxm), Firmware Files (*.nxf)</td>
</tr>
<tr>
<td>Recent folders</td>
<td>Path of the recently opened folder</td>
<td></td>
</tr>
<tr>
<td>Firmware</td>
<td>As soon as the firmware file has been selected, under Firmware the name, the version and the build version as well as the device class for the selected firmware is displayed.</td>
<td>Name, Version, Build Version, Device Class for the selected firmware</td>
</tr>
<tr>
<td>Help</td>
<td>Button to open the online help of the DTM.</td>
<td></td>
</tr>
</tbody>
</table>

Table 13: Parameters “Select firmware file”

Further descriptions to the selection window Select firmware file are included in the context sensitive help (F1 key) of the Microsoft Corporation.

Note:
After in the Device assignment pane under Device selection - all or suitable only has been set, during a subsequent firmware download in the selection window Select firmware file the following data is displayed or set:

<table>
<thead>
<tr>
<th>(for the list box entry ->)</th>
<th>all files from the selected folder</th>
<th>only firmware files from the selected folder</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the selection window Select firmware file:</td>
<td>all files from the selected folder</td>
<td>only firmware files from the selected folder</td>
</tr>
<tr>
<td>Under File of type*:</td>
<td>"All Files (.)"</td>
<td>"Firmware files (.nxm)", "Firmware Files (.nxf)"</td>
</tr>
</tbody>
</table>
Table 14: In the selection window "Select firmware file"

- In the selection window mark the firmware file to be loaded using the mouse.
- In the selection window under **Firmware** the name and the version of the firmware are displayed.
- In the selection window select the **Open** button.
- A validation is made, whether the selected firmware file is suitable for the EtherNet/IP Scanner device.
- If a firmware file has been selected that is valid for the selected device, the selection window closes immediately (without dialog).
- If a firmware file has been selected that is not valid for the selected device, the query **Select firmware file** appears:
 "Invalid firmware for assigned device!
 [detailed explanation]
 Should the firmware file nevertheless be applied for the download?"

Select Firmware File

Invalid Firmware for the assigned device!

The hardware options do not match.
Required:
Firmware file: /PROFIBUS/

The protocol classes do not match.
Required: CANopen
Firmware file: PROFIDUS-DP

Shall the firmware file nevertheless be applied for the download?

[Yes] [No]

Figure 17: Request Select firmware file - Example Invalid Firmware
NOTICE Invalid firmware

Loading invalid firmware files could render your device unusable.

- Only proceed with a firmware version valid for your device.
- Answer to the request with **No** and select a valid firmware.
- The selection window closes.

2. Transmit firmware to the device.

- Note the following safety information:

 WARNING Communication stop caused by firmware update, faulty system operation possible, overwriting of firmware or loss of device parameters

Before you initiate a firmware download process, while the bus is still in operation status:

- Stop the application program.
- Make sure that all network devices are in a fail-safe condition.

NOTICE Firmware corruption or loss of parameters caused by power disconnect during firmware download

- During firmware download process, do not interrupt the power supply to the PC or to the device, and do not perform a reset to the device!
- In the dialog pane **Firmware download** click to the Download button, to download the firmware.
- The request **Do you really want to download the firmware?** is displayed.

![Question dialog](image)

Figure 18: Request - Do you really want to download the firmware?

- Click **Yes**.
- If you are sure, that you have selected the appropriate firmware file answer to the request with **Yes** otherwise with **No**.
- During the download, a progress bar is displayed ("Download active, device performs initialization..."), in the status line a clock / green hook symbol is displayed and in the dialog pane **Firmware download** the button **Download** is grayed out.
- In the **Firmware download** dialog pane the path and name as well as the version of the selected firmware file are displayed.
Figure 19: Firmware download - progress bar

Figure 20: Clock symbol and hook symbol green

Figure 21: Firmware download - download

CAUTION:

The firmware download
- stops the bus communication,
- erases the configuration database and
- overwrites the existing firmware in the device.

To complete the update and to make the device operable again, please re-download the configuration when this operation has finished.
4.6 Licensing

To open the Licensing pane:

- In the navigation area select **Settings > Licensing**.
- The dialog pane **Licensing** is displayed.

![Licensing dialog]

Figure 22: Licensing

Using the license dialog, you can order licenses for **Master protocols** and **Utilities** and transfer them to your device. Further information on the license dialog is described in the section **Licensing** [page 45].
5 Licensing

Using the license dialog, you can order licenses for **Master protocols** and **Utilities** and transfer them to your device.

5.1 Opening license dialog

You first open the License window.

Note:
You first need to assign the master device to the DTM. Only then the device data and the licenses already present in the device are displayed in the License dialog.

How to proceed:

1. Assign the master device to the DTM.
 - In the FDT container netDevice, double click to the device icon.
 - Select **Settings > Driver**.
 - Select one or several drivers (checking).
 - **Select Settings > Driver > [Name of the assigned driver]**.
 - Configure the driver settings if necessary.
 - Select **Settings > Device assignment**.
 - Under **Device selection**, select **suitable only or all** and click **Scan**.
 - In the table, check the required device.
 - Click **Apply**.
 - Close the DTM configuration dialog via **OK**.

For details to the device assignment, refer to section **Settings** [page 21].

2. Open the License pane.
 - Right-click on the device icon in the FDT container netDevice.
 - From the context menu, select **Additional functions > License**.
 - The License window opens.
 - The title bar contains the notation of the device description: **Symbolic Name [Device Description] <Station Address > (#Network ID)**.
5.2 License dialog

In the **License** pane, you can:

- check, which licenses for Master protocols or Utilities are present in the device (Position (1) in the figure below),
- order licenses (Positions (2) to (11)),
- transfer license to the device (12),

![License pane](image)

Figure 23: License pane

Note:
To display further entries under License Type, move the scroll box (a) downwards or upwards. To display further entries under **Request form, please fill out**, move the scroll box (b) downwards or upwards.
5.3 Which licenses are present in the device?

Check, which licenses are present in the device.

How to proceed:

- Open the License pane as described under section Opening license dialog [† page 45].

<table>
<thead>
<tr>
<th>License Type</th>
<th>Existing</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master protocols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Figure 24: License pane - License Type](image1)

- Under License type click at Master protocols.
- The Master protocols overview opens:

![Figure 25: License pane – License Type / Master protocols](image2)

- Or click at Utilities.
- The Utilities overview opens:

![Figure 26: License pane – License Type / Utilities](image3)

- The column Existing indicates which licenses are present in the device.

- **Yes** = License is present in the device.
- **No** = License is not present in the device.

Note:

In newer versions of the present configuration software, under License type may be displayed additional licenses or other protocols that can be ordered later.
5.3.1 License for master protocols

One General Master License:
On the device maximally 1 communication protocol with master function can be implemented.

Two General Master Licenses:
On the device maximally 2 communication protocols with master function can be implemented.

The license includes the following master protocols:
- AS-Interface Master
- CANopen Master
- DeviceNet Master
- EtherCat Master
- EtherNet/IP Scanner
- PROFIBUS Master
- PROFINET IO RT Controller
- Sercos Master

5.3.2 Licenses for utilities

SYCON.net

OPC Server

QVis Minimum Size
- QVis Standard Size
- QVis Maximum Size
- CoDeSys Minimum Size
- CoDeSys Standard Size
- CoDeSys Maximum Size

For the Utilities QVis and CoDeSys only one license can be selected alternatively:
- *Minimum Size*,
- *Standard Size* or
- *Maximum Size*.
5.4 How to order a license?

To order a license, proceed as follows:

1. Open the license dialog.
 ➢ Refer to Section Opening license dialog [page 45].

2. Select the required licenses.
 ➢ Refer to Section Selecting license(s) [page 49].

3. Enter the ordering data.
 ➢ Refer to Section Ordering data [page 50].

4. Place your order.
 ➢ Refer to Section Ordering the license [page 52].

5.5 Selecting license(s)

You can select licenses for Master protocols and / or Utilities.

1. Selecting license(s) for Master protocol(s):
 ➢ In the License pane under License type click at Master protocols.
 ➢ Under Order check as many licenses must run simultaneously on your device:
 One General Master License or Two General Master Licenses.

2. And/or select license(s) for utility(utilities):
 ➢ In the License pane under License type click at Utilities.
 ➢ Under Order check the required utility(utilities) (single or several):
 • SYCON.net
 • OPC Server
 • QVis Minimum Size*
 • QVis Standard Size*
 • QVis Maximum Size*
 • CoDeSys Minimum Size**
 • CoDeSys Standard Size**
 • CoDeSys Maximum Size**

For *) and **) minimum size, standard size or maximum size can be selected only as an alternative.
5.6 Ordering data

- Device information
 The "Device Information" required for the order are read from the device and automatically filled in the order.

- Ordering Data
 - Enter the Ordering Data into the License pane.
 - Enter the Data to manage the Order (therefore refer to section Data to manage the order (license information) [page 51]).

5.6.1 Device information (ordering data read from the device)

The following ordering data is read from the device and displayed in the License pane:

- Manufacturer
- Article number
- Serial number
- Chip type
- Step (chip revision)
- Romcode revision
- Checksum (checksum of the device data)

The gray fields under Request Form, please fill out > Value contain the ordering data read from the device:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer*</td>
<td>0x00001</td>
</tr>
<tr>
<td>Article number*</td>
<td>1251100</td>
</tr>
<tr>
<td>Serial number*</td>
<td>20007</td>
</tr>
<tr>
<td>Chip type*</td>
<td>0x000000001</td>
</tr>
<tr>
<td>Step*</td>
<td>0x0000000000</td>
</tr>
<tr>
<td>Romcode revision*</td>
<td>0x000000000</td>
</tr>
<tr>
<td>Checksum*</td>
<td>G</td>
</tr>
</tbody>
</table>

Fields marked with * are mandatory.

Figure 27: License pane - request form, please fill out / device information

These ordering data read out from the device are displayed automatically from the device.
5.6.2 Data to manage the order (license information)

For your order, you must enter the following data to the License pane:

- License type (User Single Device License).

![Figure 28: License pane - Request form, please fill out / License type](image)

- Select the license type under Request form, please fill out > Value, (for future application, currently only User Single Device License can be selected).
- Mandatory data to the order request (editable fields):
 - First name
 - Surname
 - E Mail (address, to which the license download link shall be send.)
 - Telephone
 - Company
 - Address
 - Country
 - City, State, Zip

![Figure 29: License pane - request form, please fill out / mandatory data](image)

- Enter all mandatory fields under Request form, please fill out > Value (marked with *).
- Additional order data, not mandatory (editable fields):
 - Fax
 - Customer number
 - Order number
 - Value added tax identification number

- Under Request form, please fill out > Value enter all fields for the additional data, which is not mandatory.
5.7 Ordering the license

Place your order in the License pane. Therefore:

- Select the subsidiary (4), to which the order shall be send.
- Place the order:
 - by E-Mail (5),
 - or by Fax (6) or by Telephone (7),
 - or in a file (8).

The Contact data of the selected subsidiary is displayed under the positions (9), (10) and (11).
5.7.1 Ordering the license by e-mail

You can place your order by e-mail.

- In the License pane, click e-mail... (5).
- The order e-mail License request opens:

![License request example](image.png)

Figure 31: Example: Order e-mail License request

The order e-mail License request contains:

- the E-mail... of the selected subsidiary (a),
- the automatically generated XML file (b) EmailOrderRequest - [Devicenumber]_[Serialnumber].xml with a summary info of the order information,
- the Order address (c),
- the License information (d),
- the License type (e),
- the Device information (f),
- the ordered licenses (g).
- Send the order e-mail License request.
- The order process is complete.
5.7.2 Ordering the license by fax or by telephone

You can place your order by fax or by telephone.

➢ In the License pane, click Print fax form (6) or Telephone… (7).
➢ The summary of the ordering data PrintOrderRequest_{Devicenumber}_{Serialnumber}.html is opened in a browser window.

Note:
If your browser does not display the order data or the window **Move element** or **Copy element** is displayed, check the safety settings of your system.

netX License Order Form

License Information

<table>
<thead>
<tr>
<th>Information</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name</td>
<td>John</td>
</tr>
<tr>
<td>Surname</td>
<td>Doe</td>
</tr>
<tr>
<td>e-Mail</td>
<td>License@hilscher.com</td>
</tr>
<tr>
<td>Telephone</td>
<td>+491234567890</td>
</tr>
<tr>
<td>Fax</td>
<td>+491234567890</td>
</tr>
<tr>
<td>Company</td>
<td>Doe Example LTD</td>
</tr>
<tr>
<td>Address</td>
<td>NY 14417</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>City</td>
<td>NY</td>
</tr>
<tr>
<td>Zip</td>
<td>14417</td>
</tr>
<tr>
<td>Order Number</td>
<td>976874523</td>
</tr>
<tr>
<td>Tax ID No</td>
<td>123456</td>
</tr>
</tbody>
</table>

License Type

User Single Device License

Device Information

<table>
<thead>
<tr>
<th>Information</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>0x0001</td>
</tr>
<tr>
<td>Device Number</td>
<td>123456</td>
</tr>
<tr>
<td>Serial Number</td>
<td>20007</td>
</tr>
<tr>
<td>Chip Type</td>
<td>0x0000</td>
</tr>
<tr>
<td>Step</td>
<td>0x0000</td>
</tr>
<tr>
<td>Release Revision</td>
<td>0x0000</td>
</tr>
<tr>
<td>License Pages 1</td>
<td>0x00</td>
</tr>
<tr>
<td>License Pages 2</td>
<td>0x00</td>
</tr>
</tbody>
</table>

Ordered Licenses

- One General Master License
- AS-interface Master
- CANopen Master
- DeviceNet Master
- EtherCAT Master
- EtherCAT IP Scanner
- PROFINET Master
- PROFINET IO ET Controller
- SERCOS III Master
- Secure III Master

Utilities

- SYCON.net

Date: ____________________ Signature: ____________________

Figure 32: Example: Order data form PrintOrderRequest
The order data form contains:

- the **Order address (c)**,
- the **License information (c)**,
- the **License type (e)**,
- the **Device information (f)**,
- the **ordered Licenses (g)**.

- Print the order data form, sign it and send it by fax.
- In the **License pane**, use the Fax number (10), which is displayed after the subsidiary, was selected.

Or:
- Keep ready the data form and communicate the order data via telephone.
- In the **License pane**, use the telephone number (11), which is displayed after the subsidiary, was selected.

⇒ The order process is complete.

5.7.3 Exporting license request to a file

If you are working on a process computer without an e-mail client, you can export your order information to a file, save the file to a removable disk and place your order manually via e-mail from a different PC.

- In the **License pane**, click **Export license request…** (8).
- The window **Browse for folder** is displayed.
- Choose for or create a new folder on a removable disk.
- Save the automatically generated XML file *EmailOrderRequest_-_[Devicenumber]_[Serialnumber].xml* with a summary info of the order information to this folder.

- Send this file from a PC with an e-mail client manually via e-mail.
- Therefore use an e-mail address, which is displayed after the subsidiary was selected in the **License pane** (see Position (9), figure *License pane [* page 46]).

⇒ The order process is complete.
5.8 How to get the license and transfer it to the device

Note:
License files can only be delivered via e-mail. The e-mail contains a link to download the license file.

According to the license you ordered, you will receive an e-mail containing a Link to download the license file. This leads to a server PC on which the license file is provided. Using the received link you will have to save the license file on your PC and then transfer the license to your device. If your e-mail client is on another PC as your device, you must save your license file e. g. to an USB stick.

Steps on how to proceed
1. Save the license file to a PC or a disk.
 - Click to the Link to download the license file in the e-mail.
 - Save the license file *.nxl to a PC or a removable disk.
2. Download the license file to the device.
 - Respectively connect the removable disk with the license file to the PC, which is connected to your device.
 - In the License pane, click Download license (12) in the License pane in the configuration software.
 - The file selection window Open is displayed.
 - Therein select the license file netX License Files (*.nxl).
 - Click Open.
 - The license file is transferred to the device.
 - After this the license is present in the device and is activated with the next device reset.

Note:
To activate the license in the device for the first time, a device reset is required.

3. Activate device reset
 - To check whether the license has been activated, follow the steps in section Which licenses are present in the device? [page 47].
6 Configuration

6.1 Overview configuring device parameters

Under "Configuration", you can configure your device.

- The **Network settings** include the description of the EtherNet/IP Scanner station and the IP settings.
- The **Scan list** dialog pane shows all defined connections to EtherNet/IP Adapter devices configured in the EtherNet/IP Scanner configuration.
- The **Process data** dialog pane serves as an external process data interface for the EtherNet/IP Scanner DTM.
- The **Address table** shows a list of all addresses used in the process data image.
- In the **Quick connect table**, you can configure the accelerated reattach option for the Adapter devices on an EtherNet/IP network.
- Device-specific settings can be made in the **Scanner settings** dialog pane.

![Configuration Navigation](image)

Figure 33: Navigation area - Configuration

Configuring device parameters

The following steps are required to configure the parameters of the EtherNet/IP Scanner device using the EtherNet/IP Scanner DTM:

1. Set the Scanner settings.
 - In the navigation area, select **Configuration > Network settings**.
 - Set the network settings.
 - Apply all settings.

 For 'Quick Connect' the Adapter devices must be configured as MDI or MDIX.

2. Configure Scan list.
 - In the navigation area, select **Configuration > Scan list**.
 - Select the required connection or set the IP address of the Adapter.
 - Apply all settings.

3. Setting process data
 - In the navigation area, select **Configuration > Process data**.
 - Set symbolic names for the configured modules or measuring signals.
4. If necessary, set the device address.
 - In the navigation area, select **Configuration > Address table**.

5. Adjust the Scanner settings.
 - In the navigation area, select **Configuration > Scanner settings**.
 - Under **Start-up of bus communication**, select **Automatic by the device** or **Controlled by application**.
 - Under **Application monitoring**, set the **Watchdog time**.
 - Under **Module alignment**, set **Byte boundaries** or **2 Byte boundaries**.

6. Close the master DTM configuration dialog.
 - Click **OK** to close the master DTM configuration dialog and save the configuration.

7. Download configuration parameters to the EtherNet/IP Scanner device.
 - Adhere to the necessary safety precautions to prevent personnel injury and property damage that may occur in consequence of a communication stop or in consequence of a mismatching system configuration. You find the corresponding safety information in section **Safety messages on firmware or configuration download** [page 15].

Note:
To transfer the configuration to the EtherNet/IP Scanner device, download the data of the configuration parameters into the EtherNet/IP Scanner device. See also section **Download configuration** [page 71].

For further information about configuration, see the sections
- **Network settings** [page 59]
- **Scan list** [page 61]
- **Process data** [page 63]
- **Address table** [page 64]
- **Quick connect table** [page 65]
- **Scanner settings** [page 67]
6.2 Network settings

The **Network settings** dialog pane displays the description and IP settings of the EtherNet/IP Scanner. To view the current network settings:

- In the navigation area, select **Configuration > Network settings**.

![Network Settings](image)

Parameters	**Description**	**Range of value / value**
Description | Symbolic name of the EtherNet/IP Scanner DTM. |
IP settings of the EtherNet/IP Scanner |
DHCP | To set the IP address, enable/disable DHCP protocol. |
BootP | To set the IP address, enable/disable BootP protocol. |
Fixed addresses | Enable/disable fixed IP settings. |
IP address | IP address of the EtherNet/IP Scanner station |
Network mask | Network mask of the EtherNet/IP Scanner station |
Gateway address | Gateway address of the EtherNet/IP Scanner station |
Port 1 / Port 2 |
Operating mode | Operating mode of the EtherNet/IP Scanner for port 1 or port 2 | Speed/Duplex mode/Auto negotiation
Parameters | Description | Range of value / value
--- | --- | ---
MDI mode | MDI mode of the EtherNet/IP Scanner for port 1 or port 2 | 'Auto MDI-X', 'MDI' 'MDI-X'

In accordance with the EtherNet/IP specification [4], the following rules apply:
If a port is configured for 'forced speed' and 'duplex mode' in the Quick-Connect mode, the Quick-Connect device must not use Auto-MDIX (detection of the required cable connection type) under any circumstances. This detection may take longer than the system connection time allocated for Quick Connect allows. To enable the use of straight-thru cables when Auto-MDIX is disabled, the following rules must be followed:
1. For a single-port device, the port must be configured as an MDI.
2. For devices with 2 external Ethernet ports:
 a. The names for the 2 external ports must contain a serial number (number or letter) (for example, port 1 and port 2, or A and B).
 b. The port with the lower serial number must be configured as MDI.
 c. The port with the higher serial number must be configured as MDIX.

Note: For DLR-capable devices, these requirements are more important than the requirement that DLR-capable devices use "forced Auto-MDIX" when speed and duplex are fixed.[4]

Selection for MDI mode:
- 'Auto MDI-X':
 - 'Auto negotiation’ mode does not allow 'MDI mode' to be selected. In this case, 'Auto MDI-X' automatically applies.
- 'MDI' and 'MDI-X':
 - The assignment of the RX or TX data direction to the cable ends is statically defined. As a result, the IO connection is established more quickly. A static definition is only used with Quick Connect (see also section Quick connect table [* page 65].

Table 15: Parameters of the Scanner network settings dialog pane
6.3 Scan list

The Scan list dialog pane shows all defined connections to EtherNet/IP Adapter devices that are configured in the EtherNet/IP Scanner configuration.

The IP addresses of the EtherNet/IP Adapter stations can be edited or set here.

![Scan list example](image)

Figure 35: Configuration > Scan list (example)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>Range of value / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>Checkbox to activate/deactivate a connection.</td>
<td>checked (default), not checked</td>
</tr>
<tr>
<td></td>
<td>If the Activate checkbox is checked, the scanner uses up process memory capacity for this connection and the scanner maintains a data exchange with the corresponding device/module on the bus.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the Activate checkbox is not checked, the scanner occupies memory space in the process data image for this connection, but no data exchange with the corresponding device/module takes place on the bus.</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Sequential numbering of EtherNet/IP Adapter stations (devices) in the Scan list.</td>
<td></td>
</tr>
<tr>
<td>IP address (editable)</td>
<td>IP address of the EtherNet/IP Adapter station.</td>
<td>Valid IP address</td>
</tr>
<tr>
<td></td>
<td>The IP address of the EtherNet/IP Adapter station can be set in the Scan List here and is only displayed in the EtherNet/IP Adapter DTM.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The EtherNet/IP Scanner device transmits the IP address of the EtherNet/IP Adapter station to the EtherNet/IP Adapter device during startup via the EtherNet/IP network and configures the EtherNet/IP Adapter device with it.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Text name of the EtherNet/IP Adapter station (editable)</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Symbolic name of the EtherNet/IP Adapter device from the EDS file (cannot be edited)</td>
<td></td>
</tr>
<tr>
<td>Slot</td>
<td>Slot number in the chassis, for modular adapters</td>
<td></td>
</tr>
<tr>
<td>RPI(ms)</td>
<td>Requested packet rate in ms for a connection</td>
<td>0.001 – 4294967, Default: 100</td>
</tr>
<tr>
<td></td>
<td>For values in the microsecond range, the fixed-point format can be used, e.g. 0.2 for 200 microseconds.</td>
<td></td>
</tr>
</tbody>
</table>
Parameters of the Scan list dialog pane

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>Range of value / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout multiplier</td>
<td>The connection timeout multiplier specifies the multiplication factor applied to the Expected Packet Rate to obtain the Connection timeout value. Whenever the connection times out, devices/modules should stop transmission over a connection, even if the pending close signal has been sent.</td>
<td>Value / multiplier 0 / x4 (default), 1 / x8, 2 / x16, 3 / x32, 4 / x64, 5 / x128, 6 / x256, 7 / x512, 8 – 255 / Reserved</td>
</tr>
</tbody>
</table>

Select table rows

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click First row to select the first row of a table.</td>
</tr>
<tr>
<td>Click Previous row to select the previous row of a table.</td>
</tr>
<tr>
<td>Click Next row to select the next row in a table.</td>
</tr>
<tr>
<td>Click Last row to select the last row of a table.</td>
</tr>
</tbody>
</table>

6.3.1 Set the IP address for the EtherNet/IP Adapter station

To select the required connection or to set the IP address of the adapter:

1. In the navigation area, select **Configuration > Scan list**.
2. Check the **Activate** checkbox for the required connections.
3. In the **IP Address** column, set the **IP address** for the EtherNet/IP Adapter station.
6.4 Process data

For the EtherNet/IP Scanner DTM the **Process data** pane serves as an external process data interface, e.g. for data transfer to a PLC unit. The process data pane lists the slave devices connected to the master, as well as the configured modules or input or output signals of the devices. This makes the fieldbus structure visible.

For the configured modules, submodules or measuring signals names (tags) can be set (column "Tag").

In addition, it can be specified which signal data is to be made available on the OPC server (column SCADA).

![Figure 36: Process data (example adapter device)](image)

<table>
<thead>
<tr>
<th>Column</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>Device</td>
<td>Device labeling* provided by the hardware followed by the device’s name of station in pointy brackets</td>
</tr>
<tr>
<td>module, submodule</td>
<td>Description of the modules, submodules or input or output signals configured on the device (not editable)</td>
<td></td>
</tr>
<tr>
<td>I/O signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>Symbolic name* of the device</td>
<td></td>
</tr>
<tr>
<td>module, submodule</td>
<td>Symbolic name for the modules, submodules or input or output signals configured on the device (editable)</td>
<td></td>
</tr>
<tr>
<td>I/O signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>warning</td>
<td>Duplicate Tag at the same level can cause errors by use of OPC!</td>
<td></td>
</tr>
<tr>
<td>SCADA</td>
<td></td>
<td>Selection option which module, submodule or signal data should be made available on the OPC server.</td>
</tr>
<tr>
<td></td>
<td>SCADA” (= Supervisory Control and Data Acquisition), here used with the meaning „to provide for visualizing purposes“.*</td>
<td></td>
</tr>
</tbody>
</table>

*Depending on the protocol, either the device name or the symbolic name can be edited via the device symbol context menu.

Table 18: Process data
6.5 Address table

The **Address table** dialog pane shows a list of all addresses used in the process data image. The displayed addresses refer to the used EtherNet/IP Scanner.

To configure the address data:
- Select **Configuration > Address table** in the navigation area.

![Address Table](image)

Table 19: Address table pane parameters - inputs / outputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Device name of the adapter</td>
</tr>
<tr>
<td>Slot</td>
<td>Slot in chassis, for modular adapters</td>
</tr>
<tr>
<td>Connection name</td>
<td>Textual connection name</td>
</tr>
<tr>
<td>Instance ID</td>
<td>Assembly instance ID</td>
</tr>
<tr>
<td>Length</td>
<td>Byte length of the instance</td>
</tr>
<tr>
<td>Address</td>
<td>DPM data offset address of the instance</td>
</tr>
</tbody>
</table>

Use **Display mode** to select data display mode decimal or hexadecimal.

The **CSV export** option allows to export input- and output addresses as CSV file (CSV = comma separated value). Therefore:
- Click to the **CSV export** button.
- A file saving dialog opens.
- Save the data as *.CSV file.

You can open the generated data by means of a spreadsheet application.

Sort addresses
- To sort the address data, click on the respective column header.
6.6 Quick connect table

"Quick connect" enables an adapter device to start up faster when reconnected in an EtherNet/IP network (e.g. after a tool change). For class A EtherNet/IP Adapter devices, the connection is established within 500 ms.

Requirements
- The scanner device and the adapter device must support "Quick connect" in order to use "Quick connect" to the full.
- The hardware installation must allow the transmission of the electrical lock signal to the EtherNet/IP Scanner device. A permanent I/O connection can be used for this purpose.
- The customer application must send the package EIP_OBJECT_CC_SLAVE_ACTIVATE_REQ (0x1A48) triggered by the electrical lock signal to the scanner stack to open the connection to the EtherNet/IP Scanner device.

Configuration steps
- Select Configuration > Quick connect table.

![Figure 38: Configuration > Quick connect table](image)

- Check if Support quick connect is checked.
 - If Support quick connect is checked, the time displayed under Ready to connect time is always written to the configuration software database. This time comes directly from the EDS file of the adapter device.

For more information about the Quick connect table, see the table below:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>Range of value / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support quick connect</td>
<td>If Support quick connect for an adapter device is checked, the time displayed under Ready for connection time is always written to the database of the configuration software. If Support quick connect for an adapter device is not checked, no time is written to the configuration software database for Ready for connection time. In this case, the time for Ready for connection time must be given to the scanner stack via the packet.</td>
<td>checked (default), not checked</td>
</tr>
<tr>
<td>Ready for connection time (ms)</td>
<td>The EDS file of the adapter contains the time that the Quick connect adapter device needs to be ready for connection. The time is measured from the moment the adapter device is connected to the power supply until the time the adapter device is ready to accept an incoming TCP connection. This time is called "Ready for connection time" (ENetQCTN).</td>
<td>Adapter class A: 0 ... 350 ms, Adapter class B: 0 ... 2000 ms, default: Value from the EDS file</td>
</tr>
<tr>
<td>CIP connection time (ms)</td>
<td>Time required by the EtherNet/IP Adapter to establish the connection to the EtherNet/IP Scanner. During this time, the adapter must process several frames.</td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>Description</td>
<td>Range of value / value</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the EtherNet/IP Adapter station as set in the Scan list table (see section Scan list [page 61]). This parameter defines the IP address of the EtherNet/IP Adapter device within the EtherNet/IP network.</td>
<td>Valid IP address</td>
</tr>
<tr>
<td>Name</td>
<td>Text name of the EtherNet/IP Adapter station (can be edited in the Scan list pane)</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Symbolic name of the EtherNet/IP Adapter device from the EDS file (cannot be edited)</td>
<td></td>
</tr>
</tbody>
</table>

Table 20: Parameters of the Quick connect table
6.7 Scanner settings

Device-specific settings can be made in the **Scanner settings** dialog pane. These settings only take effect after the configuration has been downloaded to the device. For download information, see *Download configuration* [page 71].

 ➢ Go to **Configuration > Scanner settings**.

![Scanner Settings]

Note:
The setting options in the **Scanner settings** dialog pane shown here may differ from the settings for customer-specific versions of the configuration software.

6.7.1 Start of bus communication

![Start of bus communication]

If **Automatically by device** is selected, the EtherNet/IP Scanner device will start with the data exchange on the bus after the initialization has been finished.

When **Controlled by application** is selected, the application program must activate the data exchange on the bus.
6.7.2 Application monitoring

![Application monitoring](image)

Figure 41: EtherNet/IP Scanner settings > Application monitoring

The **Watchdog time** determines the time within which the device watchdog must be re-triggered from the application program while the application program monitoring is activated. When the watchdog time value is equal to 0 the watchdog is deactivated and the application program monitoring is deactivated too.

The permissible range of values of the watchdog time is 20 to 65535. By default the watchdog time value equals to 1000 ms.

<table>
<thead>
<tr>
<th>Watchdog time</th>
<th>Range of value / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible range of values</td>
<td>20 ... 65535 ms</td>
</tr>
<tr>
<td>Default</td>
<td>1000 ms</td>
</tr>
<tr>
<td>The software watchdog is deactivated.</td>
<td>0 ms</td>
</tr>
</tbody>
</table>

Table 21: Range of value / Value for the watchdog time

6.7.3 Module alignment

![Module alignment](image)

Figure 42: EtherNet/IP Scanner settings > Module alignment

The **Module alignment** defines the addressing mode of the process data image. The addresses (offsets) of the process data are always interpreted as byte addresses. The **Module alignment** then defines the addressing mode, **Byte boundaries** or **2 Byte boundaries**.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte boundaries</td>
<td>The module address can start at any byte offset.</td>
</tr>
<tr>
<td>2 Byte boundaries</td>
<td>The module address can only start at even byte offsets.</td>
</tr>
</tbody>
</table>

Table 22: Parameters EtherNet/IP Scanner Settings > Module Alignment
6.8 Connecting/disconnecting device

Note:
Several EtherNet/IP Scanner DTM functions, e.g. diagnosis or the configuration download in SYCON.net, require an online connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device.

Connecting device

To establish an online connection from the EtherNet/IP Scanner device to the EtherNet/IP Scanner DTM, take the following steps:

Under **Settings** in the **Driver** pane:
- Verify that the default driver is checked and respectively check another or multiple drivers.
- Configure the driver if necessary.

Under **Settings** in the **Device assignment** pane:
- Scan for the devices (with or without firmware).
- Select the device (with or without firmware) and apply the selection.

Before you download the firmware, adhere to the necessary safety precautions to prevent personnel injury and property damage that may occur in consequence of a communication stop. For details, refer to section "Safety messages on firmware or configuration download" [page 15].

Under **Settings** in the **Firmware download** pane, if not yet a firmware was loaded to the device:
- Selecting and downloading the firmware.

Under **Settings** in the **Device assignment** pane, if not yet a firmware was loaded to the device:
- Scan for the device (with firmware) once more.
- Select the device (with firmware) once more.

An overview of the descriptions for these steps you find in the section "Overview settings for driver and device assignment" [page 21].

- In the DTM interface dialog, select the **OK** button, to apply the selection and to close the DTM interface dialog.
- Right-click on the EtherNet/IP Scanner icon.
- Select the **Connect** command from the context menu.
- The EtherNet/IP Scanner device now is connected to the EtherNet/IP Scanner DTM via an online connection. In the network view, the device description at the device icon of the master is displayed with a green colored background.
Disconnecting device

To disconnect an online connection from the EtherNet/IP Scanner device to the EtherNet/IP Scanner DTM, take the following steps:

- In the DTM interface dialog, select the **OK** button, to close the DTM interface dialog.
- Right-click on the EtherNet/IP Scanner icon.
- Select the **Disconnect** command from the context menu.

In the network view, the device description is not any more displayed with a green colored background. Now the online connection from EtherNet/IP Scanner device to the EtherNet/IP Scanner DTM.
6.9 Download configuration

The device configuration is created "offline" in the DTM (application program). A download to the device is required, to transfer the configuration with the parameter data to the device.

Note:
To download configuration parameter data to the EtherNet/IP Scanner device an online connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device is required. Further information can be found in Connecting/disconnecting device [page 69].

WARNING Communication stop caused by configuration download, faulty system operation possible or loss of device parameters

Before you initiate a configuration download process, while the bus is still in operation status:
- Stop the application program.
- Make sure that all network devices are in a fail-safe condition.

WARNING Mismatching system configuration, faulty system or device operation possible
- In the device, use only a configuration suitable for the system.

NOTICE Loss of device parameters caused by power disconnect during configuration download
- During configuration download process, do not interrupt the power supply to the PC or to the device, and do not perform a reset to the device!

Download steps

In order to transfer the configuration with the corresponding data of the configuration parameters to the EtherNet/IP Scanner device, download the data using the frame application netFrame in SYCON.net via Device > Download or context menu Download.

- Select Download in the context menu of the device.
- If the download is started as long as the slave devices are connected to the master device, the following message is displayed: "If you attempt to download during bus operation, communication between master and slaves is stopped. Do you really want to download?"

Figure 43: netDevice Message: Download
Important:
If the communication between the master device and the adapter devices is stopped, the data exchange between the master device and the adapter devices is stopped.

- Click Yes if you intend to download the configuration.
- Then the current configuration in the application program is downloaded to the device.
- Otherwise click to No.
7 Diagnosis

7.1 Overview diagnosis

Under "Diagnosis", you can diagnose your device. The dialog Diagnosis serves to diagnose the device behavior and communication errors. For diagnosis, the device must be in online state.

![Navigation area - Diagnosis EtherNet/IP Scanner DTM](image)

Online connection to the device

Note:

Accessing the Diagnosis panes of the EtherNet/IP Scanner DTM requires an online connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device. For further information refer to section Connecting/disconnecting device [page 69].

How to proceed

- In the scanner DTM diagnosis dialog, check whether the communication is OK: Diagnosis > General diagnosis > Device status "Communication" must be green!
- "Communication" is green: Open the IO monitor and test the input or output data.
- "Communication" is not green: Use Diagnosis and Extended diagnosis for troubleshooting.

Extended diagnosis

The Extended diagnosis helps to find communication and configuration errors, when default diagnosis fails.

For further information, refer to chapter Extended Diagnosis [page 79].
7.2 General diagnosis

Information regarding the Device State and other general diagnosis parameters are displayed in the General Diagnosis dialog.

General Diagnosis

Device state
- **Communication**
 - Green: Communication state
 - Gray: Not in Communication state
- **Run**
 - Green: Run state
 - Gray: Not Run state
- **Ready**
 - Yellow: Ready state
 - Gray: Not Ready state
- **Error**
 - Red: Error state
 - Gray: No Error state

Network state
- **Operate**
 - Green: Operate state
 - Gray: Not Operate state
- **Idle**
 - Yellow: Idle state
 - Gray: Not Idle state
- **Stop**
 - Red: Stop state
 - Gray: Not Stop state

Configuration state
- Configuration locked
- New configuration pending
- Reset required
- Bus ON

Communication error:

Watchdog time:
- 1000 ms

Error count:
- 0

Figure 45: General diagnosis

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
<th>Color</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device state</td>
<td>Shows whether the EtherNet/IP device executes the network communication.</td>
<td>Green</td>
<td>In COMMUNICATION state</td>
</tr>
<tr>
<td>Communication</td>
<td>Shows whether the EtherNet/IP device has been configured correctly.</td>
<td>Green</td>
<td>Configuration OK</td>
</tr>
<tr>
<td>Run</td>
<td>Shows whether the EtherNet/IP device has been started correctly. The EtherNet/IP device waits for a configuration.</td>
<td>Yellow</td>
<td>Device READY</td>
</tr>
<tr>
<td>Ready</td>
<td>Shows whether the EtherNet/IP device records a device status error. For further information about the error characteristics and the number of counted errors refer to the extended diagnosis.</td>
<td>Red</td>
<td>ERROR</td>
</tr>
<tr>
<td>Error</td>
<td>Shows whether the EtherNet/IP device is in data exchange. In a cyclic data exchange the input data or the output data of the EtherNet/IP Scanner is transmitted to the EtherNet/IP Adapter.</td>
<td>Green</td>
<td>In OPERATION state</td>
</tr>
<tr>
<td>Operate</td>
<td>Shows whether the EtherNet/IP device is in data exchange.</td>
<td>Yellow</td>
<td>In IDLE state</td>
</tr>
<tr>
<td>Idle</td>
<td>Shows whether the EtherNet/IP device is in data exchange.</td>
<td>Green</td>
<td>In STOP state</td>
</tr>
<tr>
<td>Stop</td>
<td>Shows whether the EtherNet/IP device is in Stop state. There is no cyclic data exchange at the EtherNet/IP network. The EtherNet/IP device was stopped by the application program or it changed to the Stop state because of a bus error.</td>
<td>Red</td>
<td>Not in STOP state</td>
</tr>
</tbody>
</table>
Diagnosis

Table 23: Indication general diagnosis

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
<th>Color</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline</td>
<td>The EtherNet/IP Scanner is offline as long as it does not have a valid configuration.</td>
<td>![yellow]</td>
<td>In OFFLINE state</td>
</tr>
<tr>
<td></td>
<td></td>
<td>![gray]</td>
<td>Not in OFFLINE state</td>
</tr>
</tbody>
</table>

Configuration state

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration locked</td>
<td>Shows whether the EtherNet/IP device configuration is locked, to avoid the configuration data is typed over.</td>
</tr>
<tr>
<td>New Configuration pending</td>
<td>Shows whether a new EtherNet/IP device configuration is available.</td>
</tr>
<tr>
<td>Reset required</td>
<td>Shows whether a firmware reset is required as a new EtherNet/IP device configuration has been loaded into the device.</td>
</tr>
<tr>
<td>Bus ON</td>
<td>Shows whether the bus communication was started or stopped. I.e., whether the device is active on the bus or no bus communication to the device is possible and no response telegrams are sent.</td>
</tr>
</tbody>
</table>

Table 24: Indication general diagnosis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication error</td>
<td>Shows the name of the communication error. If the cause of error is resolved, the value will be set to zero again.</td>
</tr>
<tr>
<td>Watchdog time</td>
<td>Shows the watchdog time in ms.</td>
</tr>
<tr>
<td>Error count</td>
<td>This field holds the total number of errors detected since power-up, respectively after reset. The protocol stack counts all sorts of errors in this field no matter whether they were network related or caused internally.</td>
</tr>
</tbody>
</table>
7.3 Master diagnosis

Information regarding the slave state, slave errors and slaves configured, active or in diagnostic is displayed in the Master Diagnosis dialog.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range of value / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave state</td>
<td>Shows whether slave state is ok or not.</td>
<td>UNDEFINED, OK, FAILED</td>
</tr>
<tr>
<td></td>
<td>The slave state field for master diagnosis shows whether the master is in cyclic \</td>
<td></td>
</tr>
<tr>
<td></td>
<td>data exchange to all configured slaves. In case there is at least one slave \</td>
<td></td>
</tr>
<tr>
<td></td>
<td>missing or if the slave has a diagnostic request pending, the status will be set to FAILED. For protocols that support non-cyclic communication only, the slave state is set to OK as soon as a valid configuration is found.</td>
<td></td>
</tr>
<tr>
<td>Slave error log indicator</td>
<td>Shows whether the slave error log indicator is available.</td>
<td>EMPTY, AVAILABLE</td>
</tr>
<tr>
<td></td>
<td>The error log indicator field holds the number of entries in the internal error log. If all entries are read from the log, the field will be set to zero.</td>
<td></td>
</tr>
<tr>
<td>Configured slaves</td>
<td>Shows the number of configured slaves.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of configured slaves in the network according to the slave list derived \</td>
<td></td>
</tr>
<tr>
<td></td>
<td>from the configuration database created by the configuration software. The list \</td>
<td></td>
</tr>
<tr>
<td></td>
<td>includes the slaves to which the master has to open a connection.</td>
<td></td>
</tr>
<tr>
<td>Active slaves</td>
<td>Shows number of active slaves.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of slaves in data exchange mode. The list includes the slaves to which \</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the Master has successfully opened a connection</td>
<td></td>
</tr>
<tr>
<td>Slaves with diagnostic</td>
<td>Shows number of slaves with diagnostic.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of slaves with diagnosis or error slaves.</td>
<td></td>
</tr>
</tbody>
</table>

Table 25: Parameters Master diagnosis
7.4 Station diagnosis

The Station diagnosis shows the status of the devices, which are connected to the EtherNet/IP Scanner DTM online. The DTM updates this display cyclically.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>The current status of the device associated to the IP address displayed.</td>
</tr>
<tr>
<td>IP-Address</td>
<td>IP address, to which the device is assigned.</td>
</tr>
<tr>
<td>ConnectionName</td>
<td>The name of the connection from the EtherNet/IP Scanner DTM to the device.</td>
</tr>
</tbody>
</table>

Table 26: Columns of table ‘Station Diagnosis’

The legend below describes the possible values for the state of a device, which is assigned to a station address.

<table>
<thead>
<tr>
<th>Color</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>green</td>
<td>Running</td>
<td>The device associated with this station address is running.</td>
</tr>
<tr>
<td>yellow</td>
<td>Diagnosis</td>
<td>Diagnosis is available for the device associated with this station address.</td>
</tr>
<tr>
<td>blue</td>
<td>Not found</td>
<td>The device associated with this station address was parameterized, but not found.</td>
</tr>
<tr>
<td>red</td>
<td>Error</td>
<td>An error message is available for the device associated with this station address.</td>
</tr>
</tbody>
</table>

Table 27: Possible values for the status
7.5 Firmware diagnosis

In the dialog **Firmware Diagnosis**, the current task information of the firmware is displayed.

Under **Firmware** or **Version** the name of the firmware and version (including the date) are indicated.

![Firmware Diagnosis](image)

Task information:

The table **Task Information** is listing the task information of the single firmware tasks.

<table>
<thead>
<tr>
<th>Task</th>
<th>Name of task</th>
<th>Version</th>
<th>Priority</th>
<th>Description</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX_IDLE</td>
<td>RX_TIMER</td>
<td>1.0</td>
<td>10</td>
<td>RX Idle Task</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>DLR_IRQ_TSK</td>
<td>DLR_IRQ_TSK</td>
<td>0.0</td>
<td>11</td>
<td>The task identifier is unknown</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>RX_SYSTEM</td>
<td>RX_SYSTEM</td>
<td>1.0</td>
<td>8</td>
<td>Middleware System Task</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>DPM_CCMO_SMBX</td>
<td>DPM_CCMO_SMBX</td>
<td>1.0</td>
<td>50</td>
<td>TLR-Router DPM</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>DPM_CCMO_RMBX</td>
<td>DPM_CCMO_RMBX</td>
<td>1.0</td>
<td>51</td>
<td>TLR-Router DPM</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>TLR_TIMER</td>
<td>TLR_TIMER</td>
<td>1.0</td>
<td>17</td>
<td>TLR Timer Task</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>EIM_O1_TASK</td>
<td>EIM_O1_TASK</td>
<td>1.1</td>
<td>19</td>
<td>Ethernet/IP Encapsulation Task Class 1 services</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>EIM_ENCAPPED_TASK</td>
<td>EIM_ENCAPPED_TASK</td>
<td>1.10</td>
<td>37</td>
<td>Ethernet/IP Encapsulation Task</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>FIM_OBJECT_T...</td>
<td>FIM_OBJECT_T...</td>
<td>1.22</td>
<td>38</td>
<td>Ethernet/IP Object Task</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>EIM_TCP_UDP</td>
<td>EIM_TCP_UDP</td>
<td>2.23</td>
<td>22</td>
<td>TCP/UDP task(TCP/IP stack)</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>EIM_AP_TASK</td>
<td>EIM_AP_TASK</td>
<td>1.15</td>
<td>47</td>
<td>EtherNet/IP Scanner Application Task</td>
<td>Task is not communicating (0x01)</td>
</tr>
<tr>
<td>EIP_DLR_TASK</td>
<td>EIP_DLR_TASK</td>
<td>1.4</td>
<td>18</td>
<td>EtherNet/IP DLR task</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>MARCH_ALLER</td>
<td>MARCH_ALLER</td>
<td>2.0</td>
<td>56</td>
<td>Marshall: Main Task</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>ETH_INTF</td>
<td>ETH_INTF</td>
<td>5.0</td>
<td>48</td>
<td>Ethernet Interface Task</td>
<td>Task Status ok (0x00000000)</td>
</tr>
<tr>
<td>PACKET_ROUTER</td>
<td>PACKET_ROUTER</td>
<td>2.0</td>
<td>57</td>
<td>Marshall: Packet Router Task</td>
<td>Task Status ok (0x00000000)</td>
</tr>
</tbody>
</table>

Table 28: Description table task information
8 Extended Diagnosis

8.1 Overview extended diagnosis

The "Extended Diagnosis" of the EtherNet/IP Scanner DTM helps to find communication and configuration errors, when default diagnosis fails. Therefore, it contains a list of diagnosis structures as online counter, states and parameters.

The table below gives an overview for the extended diagnosis dialog panes descriptions of the EtherNet/IP Scanner DTM:

<table>
<thead>
<tr>
<th>Folder name / section</th>
<th>Subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Various folders</td>
<td>Task information: [↩ page 80]</td>
</tr>
<tr>
<td>RX SYSTEM</td>
<td>IniBatch status [↩ page 80]</td>
</tr>
<tr>
<td>ENCAP_TASK</td>
<td>Encap command counter [↩ page 81]</td>
</tr>
<tr>
<td></td>
<td>Packet counter [↩ page 82]</td>
</tr>
<tr>
<td></td>
<td>Code diagnosis [↩ page 83]</td>
</tr>
<tr>
<td>OBJECT_TASK</td>
<td>Object request counter [↩ page 84]</td>
</tr>
<tr>
<td></td>
<td>Output connection [↩ page 85]</td>
</tr>
<tr>
<td></td>
<td>Input connection [↩ page 85]</td>
</tr>
<tr>
<td></td>
<td>Code diagnosis [↩ page 86]</td>
</tr>
<tr>
<td>TCPUDP</td>
<td>IP information [↩ page 87]</td>
</tr>
<tr>
<td></td>
<td>IP packet counter [↩ page 88]</td>
</tr>
<tr>
<td></td>
<td>IP code diagnosis [↩ page 88]</td>
</tr>
<tr>
<td></td>
<td>TCP_UDP information [↩ page 89]</td>
</tr>
<tr>
<td></td>
<td>TCP_UDP code diagnosis [↩ page 89]</td>
</tr>
<tr>
<td>AP_TASK</td>
<td>Common Diagnosis [↩ page 90]</td>
</tr>
<tr>
<td></td>
<td>General status [↩ page 90]</td>
</tr>
<tr>
<td></td>
<td>Code diagnosis [↩ page 91]</td>
</tr>
<tr>
<td>EIS_DLR_TASK</td>
<td>DLR object diagnosis [↩ page 92]</td>
</tr>
<tr>
<td></td>
<td>DLR object counter [↩ page 94]</td>
</tr>
</tbody>
</table>

Table 29: Descriptions of the Extended dialog panes

Note:
Accessing the Extended Diagnosis dialog panes of the EtherNet/IP Scanner DTM requires an online connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device. For further information refer to section Connecting/disconnecting device [↩ page 69].
8.2 Task information:

Table 30: Extended Diagnosis > [Folder Name] > Task Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>Identification number of the task</td>
</tr>
<tr>
<td>Major version</td>
<td>Task version, contains incompatible changes</td>
</tr>
<tr>
<td>Minor version</td>
<td>Task version, contains compatible changes</td>
</tr>
<tr>
<td>Maximum packet size</td>
<td>Maximum packet size, which the task sends</td>
</tr>
<tr>
<td>Default Queue</td>
<td>Queue handle, which is accessible via DPM by mailbox.</td>
</tr>
<tr>
<td>UUID</td>
<td>Unique user ID, 16 Byte indicator used for task identification and its affiliation e.g. to a stack (therein different identification data is coded in).</td>
</tr>
<tr>
<td>Init result</td>
<td>Error Code, 0= no Error</td>
</tr>
</tbody>
</table>

The description of the error codes can be found in this manual or in the corresponding software reference manuals.

8.3 IniBatch status

Table 31: Extended Diagnosis > [Folder name] > IniBatch Status

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Channel</td>
<td>Number of the communication channel used by the device.</td>
</tr>
<tr>
<td>Current State</td>
<td>Idle; IniBatch packets in progress; Retrying to send last packet; Error</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>IniBatch Result</td>
<td>OK; No DBM file; No Packet table; No data set available; Packet set is shorter than packet length; Packet Buffer is shorter than Packet length; Logical queue not defined Send packet failed; Too many retries; Error in confirmation packet status</td>
</tr>
<tr>
<td>OpenDbm Result</td>
<td>Error when opening the IniBatch database Under "OpenDbm Result" the error code is typed in, when "IniBatch Result" == "No DBM file" (1) is.</td>
</tr>
<tr>
<td>SendPacket Result</td>
<td>Error when sending a packet Under "SendPacket Result" the error code is typed in, when "IniBatch Result" == "send packet failed" (8) is.</td>
</tr>
<tr>
<td>Confirmation Result</td>
<td>Confirmation error when sending packets Under "Confirmation Result" the packet specific error code from the ulSta is typed in, when "IniBatch Result" == "Error in confirmation packet status" (10) is.</td>
</tr>
<tr>
<td>Last Packet Number</td>
<td>Value depends by the communication system.</td>
</tr>
<tr>
<td>Last Packet Command</td>
<td>Value depends by the communication system.</td>
</tr>
<tr>
<td>Last Packet Length</td>
<td>Value depends by the communication system.</td>
</tr>
<tr>
<td>Last Packet Destination</td>
<td>Value depends by the communication system.</td>
</tr>
</tbody>
</table>

Table 31: Extended Diagnosis > [Folder name] > IniBatch Status

The task status "Confirmation Result" is bus specific. The other task status are rcx-related error codes.

8.4 ENCAP_TASK

8.4.1 Encap command counter

```
Name       | Description
----------|-------------
NOP        | Counter of incoming encapsulation telegrams
List Target| Counter of incoming encapsulation telegrams
List Identity | Counter of incoming encapsulation telegrams
List Services | Counter of incoming encapsulation telegrams
Register session | 0
Unregister session | 0
Send process data | 0
Unknown Command | 0
Good Reply | 0
Error Reply | 0
```

Figure 50: Extended Diagnosis > EIM_ENCAP_TASK > Encap command counter
Extended Diagnosis

List Interfaces
- Description: Counter of incoming encapsulation telegrams

Register Session
- Description: Counter of incoming encapsulation telegrams

Unregister Session
- Description: Counter of incoming encapsulation telegrams

Process data
- Description: Unit-Date RR data telegrams

Unknown command
- Description: Counter of incoming encapsulation telegrams

Good Reply
- Description: Counter of incoming encapsulation telegrams

Error Reply
- Description: Counter of incoming encapsulation telegrams

Table 32: Extended Diagnosis > EIM_ENCAP_TASK > Encap command counter

8.4.2 Packet counter

Table 33: Extended Diagnosis > EIM_ENCAP_TASK > Packet Counter

Figure 51: Extended Diagnosis > EIM_ENCAP_TASK > Packet Counter

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Service]</td>
<td>Diagnosis counter of the encapsulation layer. Indicates the services processed. (The services of the single packets are described in the API manual.)</td>
</tr>
</tbody>
</table>

Table 33: Extended Diagnosis > EIM_ENCAP_TASK > Packet Counter

© Hilscher 2006 – 2022

DTM for EtherNet/IP Scanner devices | Configuration of EtherNet/IP Scanner devices
DOC061201O113EN | Revision 13 | English | 2022-06 | Released | Public
8.4.3 Code diagnosis

<table>
<thead>
<tr>
<th>Task states</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Info counter</td>
<td>Counter for information messages</td>
</tr>
<tr>
<td></td>
<td>Warning counter</td>
<td>Counters for warning messages</td>
</tr>
<tr>
<td></td>
<td>Error counter</td>
<td>Counter for errors that have occurred</td>
</tr>
<tr>
<td></td>
<td>Error level</td>
<td>Class of the last error that occurred</td>
</tr>
<tr>
<td></td>
<td>Error code</td>
<td>Code of the last error</td>
</tr>
<tr>
<td></td>
<td>Parameters</td>
<td>Additional information about the error</td>
</tr>
<tr>
<td></td>
<td>Line number</td>
<td>Line number within the software module</td>
</tr>
<tr>
<td></td>
<td>Module</td>
<td>Software module</td>
</tr>
</tbody>
</table>

Figure 52: Extended Diagnosis > EIM_ENCAP_TASK > Code

Table 34: Extended Diagnosis > EIM_ENCAP_TASK > Code
8.5 OBJECT_TASK

8.5.1 Object request counter

The object request counter table shows the number of services sent to different objects.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity Get Attribute Single</td>
<td>Counter for the Get Attribute Single Services to the Identity object</td>
</tr>
<tr>
<td>Identity Get Attribute All</td>
<td>Counter for the Get-Attribute-AllServices to the Identity object</td>
</tr>
<tr>
<td>Identity Reset</td>
<td>Counter for the reset services to the identity object</td>
</tr>
<tr>
<td>Identity unknown command</td>
<td>Counter for the unknown command services to the identity object</td>
</tr>
<tr>
<td>Assembly Get Attribute Single</td>
<td>Counter for the Get Attribute Single services to the Assembly object</td>
</tr>
<tr>
<td>[Object] [Service]</td>
<td>Counter for the [service] services to the [object] object</td>
</tr>
</tbody>
</table>

Table 35: Extended Diagnosis > EIM_OBJECT_TASK > Object Request Counter

Figure 53: Extended Diagnosis > EIM_OBJECT_TASK > Object Request Counter
8.5.2 Output connection

<table>
<thead>
<tr>
<th>Task states</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue open</td>
<td>2832</td>
<td></td>
</tr>
<tr>
<td>Issue close</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Open connections</td>
<td>0x00000000</td>
<td></td>
</tr>
<tr>
<td>Last error instance</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Last GRC</td>
<td>0x1</td>
<td></td>
</tr>
<tr>
<td>Last ERC</td>
<td>0x204</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 54: Extended Diagnosis > EIM_OBJECT_TASK > Output connection](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue open</td>
<td>Counter for open commands</td>
</tr>
<tr>
<td>Issue close</td>
<td>Counter for closed commands</td>
</tr>
<tr>
<td>Open connections</td>
<td>Currently open connections</td>
</tr>
<tr>
<td>Last instance with error</td>
<td>Last instance of error</td>
</tr>
<tr>
<td>Last GRC</td>
<td>Last General Status Code</td>
</tr>
<tr>
<td>Last ERC</td>
<td>Last Extended Status Code</td>
</tr>
</tbody>
</table>

Table 36: Extended Diagnosis > EIM_OBJECT_TASK > Output connection

8.5.3 Input connection

<table>
<thead>
<tr>
<th>Task states</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Error Address</td>
<td>0x00000000</td>
<td></td>
</tr>
<tr>
<td>Last GRC</td>
<td>0x0</td>
<td></td>
</tr>
<tr>
<td>Last ERC</td>
<td>0x0</td>
<td></td>
</tr>
<tr>
<td>Current connections</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 55: Extended Diagnosis > EIM_OBJECT_TASK > Input connection](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last bad address</td>
<td>IP address</td>
</tr>
<tr>
<td>Last GRC</td>
<td>Last General Status Code</td>
</tr>
<tr>
<td>Last ERC</td>
<td>Last Extended Status Code</td>
</tr>
<tr>
<td>Current connections</td>
<td>Currently open connections</td>
</tr>
</tbody>
</table>

Table 37: Extended Diagnosis > EIM_OBJECT_TASK > Input connection
8.5.4 Code diagnosis

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info counter</td>
<td>Counter for information messages</td>
</tr>
<tr>
<td>Warnings</td>
<td>Counters for warning messages</td>
</tr>
<tr>
<td>Error counter</td>
<td>Counter for errors that have occurred</td>
</tr>
<tr>
<td>Error level</td>
<td>Class of the last error that occurred</td>
</tr>
<tr>
<td>Error code</td>
<td>Code of the last error</td>
</tr>
<tr>
<td>Parameters</td>
<td>Additional information about the error</td>
</tr>
<tr>
<td>Line number</td>
<td>Line number within the software module</td>
</tr>
<tr>
<td>Module</td>
<td>Software module</td>
</tr>
</tbody>
</table>

Figure 56: Extended > OBJECT_TASK > Code

Table 38: Extended > OBJECT_TASK > Code
8.6 TCPUDP

8.6.1 IP information

<table>
<thead>
<tr>
<th>Task states</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task State</td>
<td>1</td>
</tr>
<tr>
<td>Error Count</td>
<td>7</td>
</tr>
</tbody>
</table>

- **Task State**: Current status of log processing:
 - 0 = Task not initialized
 - 1 = Task running
 - 2 = Task initialized
 - 3 = Initialization error

- **Error Counter**: Counter for errors that have occurred
- **Last Error**: Last occurred error (description see corresponding Application Programming Manual)
- **IP Address**: IP address of the Adapter station.
- **Network Mask**: Network mask of the Adapter station.
- **Gateway**: Gateway address of the Adapter station.
- **IP Configuration source (IP config source)**: IP configuration was performed from the following source:
 - None (no configuration received),
 - DHCP server,
 - BootP server,
 - database, warm boot packet,
 - ICMP (ping) (not supported),
 - Hilscher NetIdent protocol

Table 39: Extended Diagnosis > EIM_TCPUDP > IP Information
8.6.2 IP packet counter

Table 40: Extended Diagnosis > EIM_TCPUDP > IP Packet Counter

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received TCP packets</td>
<td>Counter for incoming TCP packets</td>
</tr>
<tr>
<td>Received UDP packets</td>
<td>Counter for received UDP packets</td>
</tr>
<tr>
<td>Received ICMP packets</td>
<td>Counter for incoming ICMP packets</td>
</tr>
<tr>
<td>Received IP packets with a faulty IP header</td>
<td>Counter for incoming IP packets with errors</td>
</tr>
<tr>
<td>Received ARP packets</td>
<td>Counter for received ARP packets</td>
</tr>
<tr>
<td>Unknown received packets</td>
<td>Counter for incoming packets of unknown type</td>
</tr>
</tbody>
</table>

Figure 58: Extended Diagnosis > EIM_TCPUDP > IP Packet Counter

8.6.3 IP code diagnosis

Table 41: Extended > EIM_TCPUDP > IP Code

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note counter</td>
<td>Counter for information messages</td>
</tr>
<tr>
<td>Warning counter</td>
<td>Counters for warning messages</td>
</tr>
<tr>
<td>Error counter</td>
<td>Counter for errors</td>
</tr>
<tr>
<td>Severity of the error (severity level)</td>
<td>Class of the last error that occurred</td>
</tr>
<tr>
<td>Code</td>
<td>Code of the last error</td>
</tr>
<tr>
<td>Parameters</td>
<td>Additional information about the error</td>
</tr>
<tr>
<td>Module</td>
<td>Software module</td>
</tr>
<tr>
<td>Line number</td>
<td>Line number within the software module</td>
</tr>
</tbody>
</table>

Figure 59: Extended > EIM_TCPUDP > IP Code
8.6.4 TCP_UDP information

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task status</td>
<td>Current status of log processing:</td>
</tr>
<tr>
<td></td>
<td>0 = Task not initialized</td>
</tr>
<tr>
<td></td>
<td>1 = Task running</td>
</tr>
<tr>
<td></td>
<td>2 = Task initialized</td>
</tr>
<tr>
<td></td>
<td>3 = Initialization error</td>
</tr>
<tr>
<td>Error counter</td>
<td>Counter for errors that have occurred</td>
</tr>
<tr>
<td>Last error</td>
<td>Last occurred error (description see corresponding Application Programming Manual)</td>
</tr>
</tbody>
</table>

Table 42: Extended Diagnosis > EIM_TCPUDP > TCP_UDP Information

8.6.5 TCP_UDP code diagnosis

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes Counter</td>
<td>Counter for information messages</td>
</tr>
<tr>
<td>Warnings Counter</td>
<td>Counters for warning messages</td>
</tr>
<tr>
<td>Error counter</td>
<td>Counter for errors</td>
</tr>
<tr>
<td>Severity of the entry (severity level)</td>
<td>Class of the last error that occurred</td>
</tr>
<tr>
<td>Code</td>
<td>Code of the last error</td>
</tr>
<tr>
<td>Parameters</td>
<td>Additional information about the error</td>
</tr>
<tr>
<td>Module</td>
<td>Software module</td>
</tr>
<tr>
<td>Line number</td>
<td>Line number within the software module</td>
</tr>
</tbody>
</table>

Table 43: Extended Diagnosis > EIM_TCPUDP > TCP_UDP Code Diagnosis
8.7 AP_TASK

8.7.1 Common Diagnosis

<table>
<thead>
<tr>
<th>Task States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>State field</td>
</tr>
<tr>
<td>Bus state</td>
</tr>
<tr>
<td>Communication error</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>Watchdog time</td>
</tr>
<tr>
<td>Protocol class</td>
</tr>
<tr>
<td>Error counter</td>
</tr>
</tbody>
</table>

Table 44: Extended Diagnosis > EIM_AP_TASK > Common Diagnosis

8.7.2 General status

<table>
<thead>
<tr>
<th>General State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task States</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Error code</td>
</tr>
</tbody>
</table>

Table 45: Extended Diagnosis > EIM_AP_TASK > General Status
8.7.3 Code diagnosis

<table>
<thead>
<tr>
<th>Task states</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Info counter</td>
<td>0</td>
</tr>
<tr>
<td>Warning counter</td>
<td>0</td>
</tr>
<tr>
<td>Error counter</td>
<td>0</td>
</tr>
<tr>
<td>Error level</td>
<td>0</td>
</tr>
<tr>
<td>Error code</td>
<td>0x0</td>
</tr>
<tr>
<td>Parameters</td>
<td>0x0</td>
</tr>
<tr>
<td>Line number</td>
<td>0</td>
</tr>
<tr>
<td>Module</td>
<td></td>
</tr>
</tbody>
</table>

Figure 64: Extended > AP_TASK > Code

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info counter</td>
<td>Counter for information messages</td>
</tr>
<tr>
<td>Warnings</td>
<td>Counters for warning messages</td>
</tr>
<tr>
<td>Error counter</td>
<td>Counter for errors that have occurred</td>
</tr>
<tr>
<td>Error level</td>
<td>Class of the last error that occurred</td>
</tr>
<tr>
<td>Error code</td>
<td>Code of the last error</td>
</tr>
<tr>
<td>Parameters</td>
<td>Additional information about the error</td>
</tr>
<tr>
<td>Line number</td>
<td>Line number within the software module</td>
</tr>
<tr>
<td>Module</td>
<td>Software module</td>
</tr>
</tbody>
</table>

Table 46: Extended > AP_TASK > Code
8.8 EIS_DLR_TASK

8.8.1 DLR object diagnosis

<table>
<thead>
<tr>
<th>Task states</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Value</td>
</tr>
<tr>
<td>Network Topology</td>
<td>Linear</td>
</tr>
<tr>
<td>Network Status</td>
<td>Normal</td>
</tr>
<tr>
<td>Ring supervisor status</td>
<td>Normal ring node</td>
</tr>
<tr>
<td>Ring supervisor node</td>
<td>Deactivated</td>
</tr>
<tr>
<td>Ring supervisor precedence</td>
<td>0</td>
</tr>
<tr>
<td>Beacon interval</td>
<td>0 micro sec</td>
</tr>
<tr>
<td>Beacon timeout</td>
<td>0 micro sec</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>0</td>
</tr>
<tr>
<td>Ring faults count</td>
<td>0</td>
</tr>
<tr>
<td>MAC of last active node port 1</td>
<td>00-00-00-00-00-00-00</td>
</tr>
<tr>
<td>IP of last active node port 1</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>MAC of last active node port 2</td>
<td>00-00-00-00-00-00-00</td>
</tr>
<tr>
<td>IP of last active node port 2</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>Ring participants count</td>
<td>0</td>
</tr>
<tr>
<td>MAC of active ring supervisor</td>
<td>00-00-00-00-00-00-00</td>
</tr>
<tr>
<td>IP of active ring supervisor</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>Precedence of active ring supervisor</td>
<td>0</td>
</tr>
<tr>
<td>Capability Flags</td>
<td>0x00000022</td>
</tr>
<tr>
<td>MAC node 1</td>
<td>00-00-00-00-00-00-00-00</td>
</tr>
<tr>
<td>IP node 1</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>MAC node 2</td>
<td>00-00-00-00-00-00-00-00</td>
</tr>
<tr>
<td>IP node 2</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>MAC node 3</td>
<td>00-00-00-00-00-00-00-00</td>
</tr>
<tr>
<td>IP node 3</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>MAC node 4</td>
<td>00-00-00-00-00-00-00-00</td>
</tr>
<tr>
<td>IP node 4</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>MAC node 5</td>
<td>00-00-00-00-00-00-00-00</td>
</tr>
<tr>
<td>IP node 5</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>MAC node 6</td>
<td>00-00-00-00-00-00-00-00</td>
</tr>
<tr>
<td>IP node 6</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>MAC node 7</td>
<td>00-00-00-00-00-00-00-00</td>
</tr>
<tr>
<td>IP node 7</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>MAC node 8</td>
<td>00-00-00-00-00-00-00-00</td>
</tr>
<tr>
<td>IP node 8</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>MAC node 9</td>
<td>00-00-00-00-00-00-00-00</td>
</tr>
<tr>
<td>IP node 9</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

Figure 65: Extended > EIS_DLR_TASK > DLR Object

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network topology</td>
<td>Possible values are Linear or Ring</td>
</tr>
<tr>
<td>Network status</td>
<td>Possible values: Normal, Ring Error, Unexpected Loop Detected, Partial Ring Error, Error Series Detected</td>
</tr>
<tr>
<td>Ring supervisor status</td>
<td>Possible values: Backup, Active Ring Supervisor, Normal Ring Node, DLR not supported, Current Supervisor parameters are not supported</td>
</tr>
<tr>
<td>Ring supervisor mode</td>
<td>Possible values are Disabled, Enabled</td>
</tr>
<tr>
<td>Ring Supervisor Precedence</td>
<td>A priority assigned to a ring supervisor for transmitting beacon frames (see www.odva.org)</td>
</tr>
<tr>
<td>Beacon Interval (micro-sec)</td>
<td>Ring interval within which the supervisor sends beacon frames (see www.odva.org)</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Beacon timeout (micro-sec)</td>
<td>Timeout for nodes until beacon frames are received and appropriate actions are taken to trigger them (depending on whether the node is a supervisor or a normal ring node). (See www.odva.org)</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN ID when sending DLR protocol frames.</td>
</tr>
<tr>
<td>Ring error counter</td>
<td>Counts errors in the ring</td>
</tr>
<tr>
<td>MAC of last active node port 1</td>
<td>MAC address of the last active node on port 1</td>
</tr>
<tr>
<td>IP of last active node port 1</td>
<td>IP address of the last active node on port 1</td>
</tr>
<tr>
<td>MAC of last active node port 2</td>
<td>MAC address of the last active node on port 2</td>
</tr>
<tr>
<td>IP of the last active node port 2</td>
<td>IP address of the last active node on port 2</td>
</tr>
<tr>
<td>Ring participants</td>
<td>Number of participants in the ring</td>
</tr>
<tr>
<td>MAC of the active ring supervisor</td>
<td>MAC address of the active ring supervisor</td>
</tr>
<tr>
<td>IP of the active ring supervisor</td>
<td>IP address of the active ring supervisor</td>
</tr>
<tr>
<td>Priority of the active supervisor</td>
<td>Priority with which the supervisor participates in the ring.</td>
</tr>
<tr>
<td>Capability flags</td>
<td>Show what the supervisor has.</td>
</tr>
<tr>
<td>MAC node 1</td>
<td>MAC address node 1</td>
</tr>
<tr>
<td>IP node 1</td>
<td>IP address node 1</td>
</tr>
<tr>
<td>to MAC node 10</td>
<td>Node 2 MAC address</td>
</tr>
<tr>
<td>IP node 10</td>
<td>Node 2 IP address</td>
</tr>
</tbody>
</table>

Table 47: Extended > EIS_DLR_TASK > DLR Object
DLR object counter

Table 48: Extended Diagnosis > EIS_DLR_TASK > DLR Object Counter

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Service]</td>
<td>Diagnostic counter of the DLR object layer. Indicates the services processed. (The services of the single packets are described in the API manual.)</td>
</tr>
</tbody>
</table>

Figure 66: Extended Diagnosis > EIS_DLR_TASK > DLR Object Counter
9 Tools

9.1 Overview tools

Under "Tools", the Packet monitor and the IO monitor are provided for test and diagnosis purposes.

- In the "Packet Monitor", data packets are used to communicate with the firmware and are exchanged between the application (configuration software) and the firmware in the device.

- The "I/O Monitor" offers an easy way to display data of the process image and to change the output data.

![Navigation area - Tools (example)](image)

Online connection to the device

Note:
Accessing the **Tools** dialog panes of the EtherNet/IP Scanner DTM requires an online connection from the EtherNet/IP Scanner DTM to the EtherNet/IP Scanner device. For further information refer to section *Connecting/disconnecting device* [page 69].
9.2 Packet monitor

The Packet monitor serves for test and diagnosis purposes.

Data packets, i.e. messages are self-contained blocks of defined data length. The packets are used to communicate with the firmware and they are exchanged between the application (configuration software) and the firmware in the device. Packets can be sent once or cyclically to the connected device controlled by the user and packets received can be displayed.

Data packets comprise from a Packet header and the Send data or from a Packet header and the Receive data. The packet header can be evaluated by the receiver of the packet and contain the sender and receiver address, the data length, an ID number, status and error messages and the command or response code. The minimum packet size amounts 40 Byte for the packet header. The sending and receiving data is added.

For further information to the packet description, refer to the Protocol API Manual.

- Open the Packet monitor via Tools > Packet monitor.

![Packet Monitor](image)

Figure 68: Packet monitor

Display mode switches the representation of the send and reception data between decimal and hexadecimal.

- Select **Reset counter** to reset the packet counter.
9.2.1 Sending packet

Packet header

Under **Send > Packet header** the elements of the packet header of the sending packet are displayed, which is transmitted from the application (configuration software) to the device. The packet header of the sending packets contain the elements described in the following table.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dest</td>
<td>Destination Queue Handle</td>
</tr>
<tr>
<td>Src</td>
<td>Source Queue Handle</td>
</tr>
<tr>
<td>Dest ID</td>
<td>Destination Queue Reference</td>
</tr>
<tr>
<td>Src ID</td>
<td>Source Queue Reference</td>
</tr>
<tr>
<td>Len</td>
<td>Packet Data Length (in bytes)</td>
</tr>
<tr>
<td>ID</td>
<td>Packet Identification As Unique Number</td>
</tr>
<tr>
<td>State</td>
<td>Status / Error Code</td>
</tr>
<tr>
<td>Cmd</td>
<td>Command / Response Code</td>
</tr>
<tr>
<td>Ext</td>
<td>Extension</td>
</tr>
<tr>
<td>Rout</td>
<td>Routing Information</td>
</tr>
</tbody>
</table>

Table 49: Descriptions Packet header

- Under **Dest** select the receiver (destination task queue).
- Under **Cmd** select the command identification (Request).
- **Auto Increment ID** is an increment for the identifier of the data packets and increments the ID by 1 for each newly sent packet.

Send data

- Under **Send > Send data** enter the send data of the packet, which shall be transmitted from the application (configuration software) to the mailbox of the device. The meaning of the transmitted data depends on the command or response code.

Sending packets once or cyclic

- To send packet "once", select **Put packet**.
- To send packet "cyclic", select **Put cyclic**.
9.2.2 Receiving packet

Packet header

Under **Receive > Packet header** the elements of the packet header of the receiving packet are displayed, which are transmitted back from the device to the application (configuration software). The packet header of the receiving packets contain the elements described in the following table.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dest</td>
<td>Destination Queue Handle Contains the identifier of the receiver for the packet (destination task queue of the firmware).</td>
</tr>
<tr>
<td>Src</td>
<td>Source Queue Handle Contains the identifier of the sender of the packet (sending task).</td>
</tr>
<tr>
<td>Dest ID</td>
<td>Destination Queue Reference Contains an identifier for the receiver of unsolicited sent packets from the firmware to the application (configuration software).</td>
</tr>
<tr>
<td>Src ID</td>
<td>Source Queue Reference Contains an identifier of the sender.</td>
</tr>
<tr>
<td>Len</td>
<td>Packet Data Length (in bytes) Length of the send respectively receive data.</td>
</tr>
<tr>
<td>ID</td>
<td>Packet Identification As Unique Number Identifies identical data packets among each other.</td>
</tr>
<tr>
<td>State</td>
<td>Status / Error Code Transmits status or error codes to the packet sender.</td>
</tr>
<tr>
<td>Cmd</td>
<td>Command / Response Code Command or respond code.</td>
</tr>
<tr>
<td>Ext</td>
<td>Extension Field for extensions (reserved).</td>
</tr>
<tr>
<td>Rout</td>
<td>Routing Information Internal value of the firmware.</td>
</tr>
</tbody>
</table>

Table 50: Descriptions Packet header

Receive data

Under **Receive > Receive data** the receiving data of the packet, which is transmitted back from the device to the application (configuration software) is displayed.
9.3 I/O monitor

The I/O monitor serves for test and diagnosis purposes. It provides to view data of the process data image and to change output data easily. The display is always in a Byte manner.

Note:
Only change and write output data if you know that no plant disturbances are caused by this. All output data written by the I/O monitor is transmitted at the bus and have effect on subordinate drives, IO etc.

Figure 71: IO monitor

Columns switches the number of columns.

Display mode switches the representation of the input and output data between decimal and hexadecimal.

Offset / Go moves the indication of the data to the entered offset value.

- Enter the output value and select **Update**.
- The data of the process image are always displayed, even if these bytes are not reserved by the configuration.
9.4 Process image monitor

The window **Process image monitor** lists the adapter devices connected to the scanner, as well as the configured modules or input or output signals of the devices. This makes visible the fieldbus structure and the data structure of the device’s input and output data transmitted at the bus. Furthermore, the values of the signal data provided to the OPC server are displayed here.

- Open **Tools > Process image monitor**.

![Figure 72: Window "Process image monitor"](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range of value/value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display mode</td>
<td>Display of the values in the column Value in decimal or hexadecimal mode.</td>
<td>Decimal (Default), Hexadecimal</td>
</tr>
<tr>
<td>'"'</td>
<td>Display when the input and output data is not completely read and analyzed.</td>
<td></td>
</tr>
<tr>
<td>'*'</td>
<td>Display when the input and output data is not valid.</td>
<td></td>
</tr>
<tr>
<td>'✓'</td>
<td>Display when the input and output data is valid.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Device labeling provided by the hardware: Also description of the modules or input or output signals configured to the device.</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Range of value/value</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>TAG</td>
<td>Device name provided by the hardware (not changeable in the FDT container) or symbolic name for the modules configured to the device or for the input or output signals (changeable in the window Configuration > Process data).</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>Display of the valid input and output data values.</td>
<td></td>
</tr>
<tr>
<td>Last error</td>
<td>Last occurred error (Description see appropriate Application Programming Manual)</td>
<td></td>
</tr>
</tbody>
</table>

Table 51: Notes to the "Process image monitor" window
10 Appendix

10.1 References

Safety standard

10.2 User rights

User-rights are set within the FDT-container. Depending on the level, the configuration is accessible by the user or read-only.

To access the **Settings**, **Configuration** and **Diagnosis** panes of the EtherNet/IP Scanner DTM you do not need special user rights. Also all users can select the decimal or hexadecimal Display mode or sort table entries.

Note:
To edit, set or configure the parameters of the **Settings** and **Configuration** panes, you need user rights for ”Maintenance”, for ”Planning Engineer” or for ”Administrator”.

The following tables give an overview of the user right groups and which user rights you need to configure the single parameters.

10.2.1 Settings

<table>
<thead>
<tr>
<th>Settings</th>
<th>Observer</th>
<th>Operator</th>
<th>Maintenance</th>
<th>Planning Engineer</th>
<th>Administrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verifying or adapting driver settings [† page 24]</td>
<td>D</td>
<td>D</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Configuring netX driver [† page 27]</td>
<td>D</td>
<td>D</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Device Assignment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scanning for devices [† page 33]</td>
<td>D</td>
<td>D</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Selecting the device (with or without firmware) [† page 36]</td>
<td>D</td>
<td>D</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Selecting the device once more (with firmware) [† page 36]</td>
<td>D</td>
<td>D</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Selecting and downloading firmware [† page 38]</td>
<td>D</td>
<td>D</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Licensing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licensing [† page 44]</td>
<td>D</td>
<td>D</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 52: User rights settings (D = displaying, X = editing, configuring)

10.2.2 Configuration

<table>
<thead>
<tr>
<th>Observer</th>
<th>Operator</th>
<th>Maintenance</th>
<th>Planning Engineer</th>
<th>Administrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network settings [† page 59]</td>
<td>A</td>
<td>A</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Scan list [† page 61]</td>
<td>A</td>
<td>A</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Process data [† page 63]</td>
<td>A</td>
<td>A</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Address table [† page 64]</td>
<td>A</td>
<td>A</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Quick connect table [† page 65]</td>
<td>A</td>
<td>A</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Master settings</td>
<td>A</td>
<td>A</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 53: User rights configuration (D = displaying, X = editing, configuring)
10.3 Conventions in this document

Instructions
1. Operation purpose
2. Operation purpose
 ➢ Instruction

Results
➢ Intermediate result
➢ Final result

Signs

<table>
<thead>
<tr>
<th>Sign</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢</td>
<td>General note</td>
</tr>
<tr>
<td>!</td>
<td>Important note that must be followed to prevent malfunctions.</td>
</tr>
<tr>
<td>✉️</td>
<td>Reference to further information</td>
</tr>
</tbody>
</table>

Table 54: Signs

Signal words

<table>
<thead>
<tr>
<th>Signal word</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️ DANGER</td>
<td>Indicates a hazardous situation, which if not avoided, will result in death or serious injury.</td>
</tr>
<tr>
<td>⚠️ WARNING</td>
<td>Indicates a hazardous situation, which if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td>⚠️ CAUTION</td>
<td>Indicates a hazardous situation, which if not avoided, may result in minor or moderate injury.</td>
</tr>
<tr>
<td>📚 NOTICE</td>
<td>Indicates a property damage message.</td>
</tr>
</tbody>
</table>

Table 55: Signal words
10.4 Legal notes

Copyright

© Hilscher Gesellschaft für Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user's manual, operator's manual, Statement of Work document and all other document types, support texts, documentation, etc.) are protected by German and international copyright and by international trade and protective provisions. Without the prior written consent, you do not have permission to duplicate them either in full or in part using technical or mechanical methods (print, photocopy or any other method), to edit them using electronic systems or to transfer them. You are not permitted to make changes to copyright notices, markings, trademarks or ownership declarations. Illustrations are provided without taking the patent situation into account. Any company names and product designations provided in this document may be brands or trademarks by the corresponding owner and may be protected under trademark, brand or patent law. Any form of further use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care was/is given in the preparation of the documentation at hand consisting of a user's manual, operating manual and any other document type and accompanying texts. However, errors cannot be ruled out. Therefore, we cannot assume any guarantee or legal responsibility for erroneous information or liability of any kind. You are hereby made aware that descriptions found in the user's manual, the accompanying texts and the documentation neither represent a guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute. It cannot be ruled out that the user's manual, the accompanying texts and the documentation do not completely match the described attributes, standards or any other data for the delivered product. A warranty or guarantee with respect to the correctness or accuracy of the information is not assumed.

We reserve the right to modify our products and the specifications for such as well as the corresponding documentation in the form of a user's manual, operating manual and/or any other document types and accompanying texts at any time and without notice without being required to notify of said modification. Changes shall be taken into account in future manuals and do not represent an obligation of any kind, in particular there shall be no right to have delivered documents revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft für Systemautomation mbH be liable for direct, indirect, ancillary or subsequent damage, or for any loss of income, which may arise after use of the information contained herein.
Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft für Systemautomation mbH with utmost care and is made available as is. No warranty can be assumed for the performance or flawlessness of the hardware and/or software under all application conditions and scenarios and the work results achieved by the user when using the hardware and/or software. Liability for any damage that may have occurred as a result of using the hardware and/or software or the corresponding documents shall be limited to an event involving willful intent or a grossly negligent violation of a fundamental contractual obligation. However, the right to assert damages due to a violation of a fundamental contractual obligation shall be limited to contract-typical foreseeable damage.

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or software in connection with

- Flight control systems in aviation and aerospace;
- Nuclear fission processes in nuclear power plants;
- Medical devices used for life support and
- Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly prohibited:

- For military purposes or in weaponry;
- For designing, engineering, maintaining or operating nuclear systems;
- In flight safety systems, aviation and flight telecommunications systems;
- In life-support systems;
- In systems in which any malfunction in the hardware and/or software may result in physical injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in hazardous environments, which require fail-safe control mechanisms. Use of the hardware and/or software in this kind of environment shall be at your own risk; any liability for damage or loss due to impermissible use shall be excluded.

Warranty

Hilscher Gesellschaft für Systemautomation mbH hereby guarantees that the software shall run without errors in accordance with the requirements listed in the specifications and that there were no defects on the date of acceptance. The warranty period shall be 12 months commencing as of the date of acceptance or purchase (with express declaration or implied, by customer's conclusive behavior, e.g. putting into operation permanently).
The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the date of delivery ex works. The aforementioned provisions shall not apply if longer warranty periods are mandatory by law pursuant to Section 438 (1.2) BGB, Section 479 (1) BGB and Section 634a (1) BGB [Bürgerliches Gesetzbuch; German Civil Code]. If, despite of all due care taken, the delivered product should have a defect, which already existed at the time of the transfer of risk, it shall be at our discretion to either repair the product or to deliver a replacement product, subject to timely notification of defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the purchaser or third party has tampered with the products, if the defect is the result of natural wear, was caused by unfavorable operating conditions or is due to violations against our operating regulations or against rules of good electrical engineering practice, or if our request to return the defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is found. Any form of technical support, maintenance and customization is not a warranty service, but instead shall be charged extra.

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care, Hilscher Gesellschaft für Systemautomation mbH shall not assume any guarantee for the suitability thereof for any purpose that was not confirmed in writing. No guarantee can be granted whereby the hardware and software satisfies your requirements, or the use of the hardware and/or software is uninterrupted or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or violated or that the products are free from third-party influence. No additional guarantees or promises shall be made as to whether the product is market current, free from deficiency in title, or can be integrated or is usable for specific purposes, unless such guarantees or promises are required under existing law and cannot be restricted.

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets, information protected by copyright and other patent and ownership privileges as well as any related rights of Hilscher Gesellschaft für Systemautomation mbH. The customer agrees to treat as confidential all of the information made available to customer by Hilscher Gesellschaft für Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft für Systemautomation mbH and that were made accessible as well as the terms and conditions of this agreement itself.

The parties hereby agree to one another that the information that each party receives from the other party respectively is and shall remain the intellectual property of said other party, unless provided for otherwise in a contractual agreement.
The customer must not allow any third party to become knowledgeable of this expertise and shall only provide knowledge thereof to authorized users as appropriate and necessary. Companies associated with the customer shall not be deemed third parties. The customer must obligate authorized users to confidentiality. The customer should only use the confidential information in connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own purposes or rather to the advantage or for the purpose of a third party, nor must it be used for commercial purposes and this confidential information must only be used to the extent provided for in this agreement or otherwise to the extent as expressly authorized by the disclosing party in written form. The customer has the right, subject to the obligation to confidentiality, to disclose the terms and conditions of this agreement directly to his legal and financial consultants as would be required for the customer's normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as well as any associated regulations of various countries, especially such laws applicable in Germany and in the United States. The products / hardware / software must not be exported into such countries for which export is prohibited under US American export control laws and its supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be responsible for observing them. You are hereby made aware that you may be required to obtain governmental approval to export, reexport or import the product.

10.5 Registered trademarks

EtherNet/IP™ is a trademark of the ODVA (Open DeviceNet Vendor Association, Inc.).

CODESYS® is a registered trademark of 3S-Smart Software Solutions GmbH, Germany.

All other brands mentioned are property of their respective owner of the rights. Any company names and product designations provided in this document may be brands (company names or trademarks) of the corresponding owner and may be protected under trademark or patent law.
List of figures

Figure 1: Dialog structure EtherNet/IP Scanner DTM ... 9
Figure 2: Navigation area .. 10
Figure 3: Status bar – status fields 1 to 6 .. 11
Figure 4: Navigation area - Settings (example) .. 21
Figure 5: Default driver ,cifX Device Driver’ for PC cards cifX (example) 24
Figure 6: Default driver ,netX Driver’ for Hilscher devices except for PC cards cifX (example) .. 24
Figure 7: Manual selection of multiple drivers (example) .. 25
Figure 8: cifX driver > USB/RS232 connection ... 28
Figure 9: netX driver > TCP connection .. 31
Figure 10: Device Assignment - detected devices (example: device without firmware) 33
Figure 11: Device Assignment - detected devices (example: device without firmware) 35
Figure 12: Device Assignment - selecting device (example: device without firmware / one device selected) .. 36
Figure 13: Device Assignment - selecting device (example: devices with and without firmware / one device selected) ... 37
Figure 14: Firmware download .. 38
Figure 15: Error Message "The device is not assigned to the hardware!" 39
Figure 16: "Select firmware file" selection window (example CIFX) .. 39
Figure 17: Request Select firmware file - Example Invalid Firmware 41
Figure 18: Request - Do you really want to download the firmware? 42
Figure 19: Firmware download - progress bar ... 43
Figure 20: Clock symbol and hook symbol green .. 43
Figure 21: Firmware download - download ... 43
Figure 22: Licensing .. 44
Figure 23: License pane .. 46
Figure 24: License pane - License Type ... 47
Figure 25: License pane – License Type / Master protocols ... 47
Figure 26: License pane – License Type / Utilities .. 47
Figure 27: License pane - request form, please fill out / device information 50
Figure 28: License pane - Request form, please fill out / License type 51
Figure 29: License pane - request form, please fill out / mandatory data 51
Figure 30: License pane – selecting the subsidiary / ordering / contacts 52
Figure 31: Example: Order e-mail License request ... 53
Figure 32: Example: Order data form PrintOrderRequest ... 54
Figure 33: Navigation area - Configuration .. 57
Figure 34: Configuration > Network settings .. 59
Figure 35: Configuration > Scan list (example) .. 61
Figure 36: Process data (example adapter device) ... 63
Figure 37: Configuration > Address Table .. 64
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Configuration > Quick connect table</td>
</tr>
<tr>
<td>39</td>
<td>Configuration > Scanner settings</td>
</tr>
<tr>
<td>40</td>
<td>EtherNet/IP Scanner settings > Start of bus communication</td>
</tr>
<tr>
<td>41</td>
<td>EtherNet/IP Scanner settings > Application monitoring</td>
</tr>
<tr>
<td>42</td>
<td>EtherNet/IP Scanner settings > Module alignment</td>
</tr>
<tr>
<td>43</td>
<td>netDevice Message: Download</td>
</tr>
<tr>
<td>44</td>
<td>Navigation area - Diagnosis EtherNet/IP Scanner DTM</td>
</tr>
<tr>
<td>45</td>
<td>General diagnosis</td>
</tr>
<tr>
<td>46</td>
<td>Master diagnosis</td>
</tr>
<tr>
<td>47</td>
<td>Firmware Diagnosis</td>
</tr>
<tr>
<td>48</td>
<td>Extended Diagnosis > [Folder Name] > Task Information Example Display</td>
</tr>
<tr>
<td>49</td>
<td>Extended Diagnosis > [Folder name] > InBatch Status example display</td>
</tr>
<tr>
<td>50</td>
<td>Extended Diagnosis > EIM_ENCAP_TASK > Encap command counter</td>
</tr>
<tr>
<td>51</td>
<td>Extended Diagnosis > EIM_ENCAP_TASK > Packet Counter</td>
</tr>
<tr>
<td>52</td>
<td>Extended Diagnosis > EIM_ENCAP_TASK > Code</td>
</tr>
<tr>
<td>53</td>
<td>Extended Diagnosis > EIM_OBJECT_TASK > Object Request Counter</td>
</tr>
<tr>
<td>54</td>
<td>Extended Diagnosis > EIM_OBJECT_TASK > Output connection</td>
</tr>
<tr>
<td>55</td>
<td>Extended Diagnosis > EIM_OBJECT_TASK > Input connection</td>
</tr>
<tr>
<td>56</td>
<td>Extended > OBJECT_TASK > Code</td>
</tr>
<tr>
<td>57</td>
<td>Extended Diagnosis > EIM_TCPUDP > IP Information</td>
</tr>
<tr>
<td>58</td>
<td>Extended Diagnosis > EIM_TCPUDP > IP Packet Counter</td>
</tr>
<tr>
<td>59</td>
<td>Extended > EIM_TCPUDP > IP Code</td>
</tr>
<tr>
<td>60</td>
<td>Extended Diagnosis > EIM_TCPUDP > TCP_UDP Information</td>
</tr>
<tr>
<td>61</td>
<td>Extended Diagnosis > EIM_TCPUDP > TCP_UDP Code Diagnosis</td>
</tr>
<tr>
<td>62</td>
<td>Extended Diagnosis > EIM_AP_TASK > Common Diagnosis</td>
</tr>
<tr>
<td>63</td>
<td>Extended Diagnosis > EIM_AP_TASK > General Status</td>
</tr>
<tr>
<td>64</td>
<td>Extended > AP_TASK > Code</td>
</tr>
<tr>
<td>65</td>
<td>Extended > EIS_DLR_TASK > DLR Object</td>
</tr>
<tr>
<td>66</td>
<td>Extended Diagnosis > EIS_DLR_TASK > DLR Object Counter</td>
</tr>
<tr>
<td>67</td>
<td>Navigation area - Tools (example)</td>
</tr>
<tr>
<td>68</td>
<td>Packet monitor</td>
</tr>
<tr>
<td>69</td>
<td>Send > Packet header and Send data</td>
</tr>
<tr>
<td>70</td>
<td>Packet header and Receive data</td>
</tr>
<tr>
<td>71</td>
<td>IO monitor</td>
</tr>
</tbody>
</table>
| 72 | Window "Process image monitor"

© Hilscher 2006 – 2022
List of tables

Table 1: List of revisions ... 5
Table 2: Overview use cases .. 6
Table 3: General device information .. 9
Table 4: OK, Cancel, Apply, Help ..10
Table 5: Status bar icons [1] ... 11
Table 6: Status bar display examples .. 11
Table 7: Getting started – Configuration steps 16
Table 8: Parameters of the driver selection list 24
Table 9: Parameters cifx driver > USB/RS232 connection 29
Table 10: Parameters netx driver > TCP connection 31
Table 11: Parameters of the Device Assignment 34
Table 12: Firmware download parameters 38
Table 13: Parameters “Select firmware file” 40
Table 14: In the selection window "Select firmware file" 40
Table 15: Parameters of the Scanner network settings dialog pane 59
Table 16: Parameters of the Scan list dialog pane 61
Table 17: Select table rows .. 62
Table 18: Process data ... 63
Table 19: Address table pane parameters - inputs / outputs 64
Table 20: Parameters of the Quick connect table 65
Table 21: Range of value / Value for the watchdog time 68
Table 22: Parameters EtherNet/IP Scanner Settings > Module Alignment .. 68
Table 23: Indication general diagnosis ... 74
Table 24: Indication general diagnosis ... 75
Table 25: Parameters Master diagnosis 76
Table 26: Columns of table ‘Station Diagnosis’ 77
Table 27: Possible values for the status .. 77
Table 28: Description table task information 78
Table 29: Descriptions of the Extended dialog panes 79
Table 30: Extended Diagnosis > [Folder Name] > Task Information .. 80
Table 31: Extended Diagnosis > [Folder name] > IniBatch Status .. 80
Table 32: Extended Diagnosis > EIM_ENCAP_TASK > Encap command counter .. 81
Table 33: Extended Diagnosis > EIM_ENCAP_TASK > Packet Counter .. 82
Table 34: Extended Diagnosis > EIM_ENCAP_TASK > Code .. 83
Table 35: Extended Diagnosis > EIM_OBJECT_TASK > Object Request Counter .. 84
Table 36: Extended Diagnosis > EIM_OBJECT_TASK > Output connection .. 85
Table 37: Extended Diagnosis > EIM_OBJECT_TASK > Input connection .. 85
Table 38: Extended > OBJECT_TASK > Code 86
Table 39: Extended Diagnosis > EIM_TCPUDP > IP Information .. 87
Table 40: Extended Diagnosis > EIM_TCPUDP > IP Packet Counter .. 88
Table 41:	Extended > EIM_TCPUDP > IP Code ... 88
Table 42:	Extended Diagnosis > EIM_TCPUDP > TCP_UDP Information............................. 89
Table 43:	Extended Diagnosis > EIM_TCPUDP > TCP_UDP Code Diagnosis 89
Table 44:	Extended Diagnosis > EIM_AP_TASK > Common Diagnosis 90
Table 45:	Extended Diagnosis > EIM_AP_TASK > General Status 90
Table 46:	Extended > AP_TASK > Code ... 91
Table 47:	Extended > EIS_DLR_TASK > DLR Object ... 92
Table 48:	Extended Diagnosis > EIS_DLR_TASK > DLR Object Counter 94
Table 49:	Descriptions Packet header ... 97
Table 50:	Descriptions Packet header ... 98
Table 51:	Notes to the "Process image monitor" window ... 100
Table 52:	User rights settings (D = displaying, X = editing, configuring) 103
Table 53:	User rights configuration (D = displaying, X = editing, configuring)............ 103
Table 54:	Signs ... 104
Table 55:	Signal words ... 104
Glossary

Adapter
Type of device that is configured by the Scanner (Master) and which then performs the communication

CODESYS
COntroller DEvelopment SYStem: Development environment for programming controller applications (PLC) according to the international industrial standard IEC 61131-3

Data packet
Data packets, i.e. messages are self-contained blocks of defined data length. The packets are used to communicate with the firmware and they are exchanged between the application (configuration software) and the firmware in the device.

DTM
Device Type Manager: Software module with graphical user interface for the configuration and/or for diagnosis of devices

Ethernet
Network technology used both for office and industrial communication via electrical or optical connections. It has been developed and specified by the Intel, DEC and XEROX, provides data transmission with collision control and allows various protocols. As Ethernet is not necessarily capable for real-time application, various real-time extensions have been developed (industrial Ethernet, real-time Ethernet).

EtherNet/IP
Communication system for industrial Ethernet designed and developed by Rockwell that uses the CIP (common industrial protocol)

EtherNet/IP Adapter
Exchanges real-time I/O data with a Scanner Class product and does not initiate connections on its own

EtherNet/IP Scanner
Exchanges real-time I/O data with adapters and scanners, can respond to connection requests and also initiate connections on its own

FDT
Field Device Tool: FDT specifies an interface, in order to be able to use DTM (Device Type Manager) in different applications of different manufacturers

IP
Internet Protocol: Belongs to the TCP/IP family of protocols and is defined in RFC791 (available on http://www.ietf.org/rfc/rfc791.txt). It is based on layer 3 of the ISO/OSI 7 layer model of networking and is a connectionless protocol, i.e. you do not need to open a connection to a computer before sending an IP data packet to it. Therefore, IP is not able to guarantee that the IP data packets really arrive at the recipient. On IP level, neither the correctness of data nor the consistence and completeness are checked. IP defines special addressing mechanisms; see IP address.

IP address
Identifies a device or a computer within an IP-based network and is defined in the Internet Protocol Version 4 (IPv4) as a 32-bit number. For ease of notation, the address is usually divided into four 8-bit numbers represented in decimal notation and separated by points: a.b.c.d. Each letter stands for an integer value between 0 and 255, e.g. 192.168.30.16. However, not all combinations are allowed, some are reserved for special purposes. The IP address 0.0.0.0 is defined as invalid.
Module
Hardware or logical component of a physical device

ODMV3
Online-Data-Manager Version 3: Application interface, respectively works as a server, which can be run as an out-proc server or system service. Its task is to provide different applications (e.g. SYCON.net), access to multiple devices and even share one device amongst several applications.

SCADA
Supervisory Control and Data Acquisition: A concept for the control and data acquisition of technical processes

Scanner
Type of device that initiates and controls the communication on the bus

Submodule
Hardware or logical component of a physical device.

SYCON.net
multiprotocol-capable Hilscher configuration and diagnosis software (FDT frame application), that can be used to configure communication-capable fieldbus devices of different manufacturers in one project
Contacts

HEADQUARTER
Germany
Hilscher Gesellschaft für Systemautomation mbH
Rheinstraße 15
65795 Hattersheim
Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-mail: info@hilscher.com
Support
Phone: +49 (0) 6190 9907-990
E-mail: hotline@hilscher.com

SUBSIDIARIES
China
Hilscher Systemautomation (Shanghai) Co. Ltd.
200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-mail: info@hilscher.cn
Support
Phone: +86 (0) 21-6355-5161
E-mail: cn.support@hilscher.com

France
Hilscher France S.a.r.l.
69800 Saint Priest
Phone: +33 (0) 4 72 37 98 40
E-mail: info@hilscher.fr
Support
Phone: +33 (0) 4 72 37 98 40
E-mail: fr.support@hilscher.com

India
Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai, Bangalore
Phone: +91 8888 750 777
E-mail: info@hilscher.in
Support
Phone: +91 8108884011
E-mail: info@hilscher.in

Italy
Hilscher Italia S.r.l.
20090 Vimodrone (MI)
Phone: +39 02 25007068
E-mail: info@hilscher.it
Support
Phone: +39 02 25007068
E-mail: it.support@hilscher.com

Japan
Hilscher Japan KK
Tokyo, 160-0022
Phone: +81 (0) 3-5362-0521
E-mail: info@hilscher.jp
Support
Phone: +81 (0) 3-5362-0521
E-mail: jp.support@hilscher.com

Republic of Korea
Hilscher Korea Inc.
13494, Seongnam, Gyeonggi
Phone: +82 (0) 31-739-8361
E-mail: info@hilscher.kr
Support
Phone: +82 (0) 31-739-8363
E-mail: kr.support@hilscher.com

Austria
Hilscher Austria GmbH
4020 Linz
Phone: +43 312 931 675-0
E-mail: sales.at@hilscher.com
Support
Phone: +43 312 931 675-0
E-mail: at.support@hilscher.com

Switzerland
Hilscher Swiss GmbH
4500 Solothurn
Phone: +41 (0) 32 623 6633
E-mail: info@hilscher.ch
Support
Phone: +41 (0) 32 623 6633
E-mail: support.swiss@hilscher.com

USA
Hilscher North America, Inc.
Lisle, IL 60532
Phone: +1 630-505-5301
E-mail: info@hilscher.us
Support
Phone: +1 630-505-5301
E-mail: us.support@hilscher.com